Visualizing textual distributions of repeated LLM responses
to characterize LLM knowledge

Richard Brath, Adam Bradley, David Jonker*

Uncharted Software

ABSTRACT

The breadth and depth of knowledge learned by Large Language
Models (LLMs) can be assessed through repetitive prompting and
visual analysis of commonality across the responses. We show
levels of LLM verbatim completions of prompt text through
aligned responses, mind-maps of knowledge across several areas in
general topics, and an association graph of topics generated directly
from recursive prompting of the LLM.

Keywords: Visual text analytics; Large language models, mind-
maps.

Index Terms: [Human-centered computing]: Human computer
interaction (HCI)—Natural language interfaces; [Human-centered
computing]: Visualization—Information visualization;
[Computing methodologies]: Artificial intelligence—Natural
language generation

1 INTRODUCTION

Billions of dollars are being invested in Large Language Models
(LLMs) such as ChatGPT ($10b), Character.Al ($1b), and Cohere
($%b) [1,2,3]. These models are subject to criticisms such as
plagiarism [4], bias [5], hallucination [6], and hacking via prompt
injection [7].

LLMs' many unknowns and uncertainties have prompted claims
of possible artificial general intelligence [8], and researchers have
asked for a pause on giant Al experiments [9]. There is a need to
better understand what these models know: content, idioms, style,
reasoning, and so forth. However, commercial LLMs are black-box
models; the internals cannot be directly observed.

A client focused on close analysis of textual content challenged
us to probe and illustrate the breadth and depth of content LLM’s
know regarding a topic. Our contribution is a method and a set of
visualizations to understand what LLMs have learned. Instead of
focusing on model breadth (e.g. [8]) or tweaking prompts to tune
results (e.g. [10]), we focus on repeating the same prompt 60—-1000
times to generate a large response set. We then create
representations of the textual response distribution to:

e Show the extents and contents of what LLM can repeat verbatim,
indicative of potential content plagiarism.

e Characterize the commonality across responses, indicative of
higher weights inside the LLM - i.e., what the model has learned.

e Reveal what associations are most frequent when the LLM
hallucinates, to get a sense of non-factual associations.
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2 BACKGROUND

The visual analytics community has researched aspects of LLMs
over the last half decade. Some researchers have focused on LLM
internals, such as attention of individual nodes or the latent space
of successive layers in the neural model [11,12]. Some focus on
diagnostics of the output, such as GLTR or LMDiff [13,14]. Some
focus on the input, such as prompt engineering [15]. These analyses
are not mutually exclusive; e.g., LIT is a general extensible tool
providing dataset exploration as well as analysis of internals such
as salience maps and attention heads [16].

Beyond visual analytics, language models can be assessed with
metrics for specific tasks; see HELM for a comprehensive set of
metrics-based analyses of LLMs [17].

3 REPETITIVE APPROACH

We contend commercial LLMs will become black boxes.
Commercial demands to retain trade-secrets to maximize profits
will eventually require that model internals and output word
probabilities will not be accessible in these systems.

LLMs are giant statistical models. Trivially, an LLM is a set of
massive matrices and connection weights into which token
sequences are inputs and outputs generated. A simple analog is a
Galton board (Fig. 1), with the model represented by the pegs
(green), the input (top), and the output (bottom). Given sufficient
inputs, the outputs approximate a normal distribution.
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Figure 1. Galton board as an analog of an LLM.
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Similarly, we hypothesize we can prompt an LLM 60-1000
times with the exact same prompt. Because the LLM is non-
deterministic, results will differ, but pathways in the model that are
more heavily weighted will be more frequently expressed. This is
similar to self-consistency in LLMs, where multiple responses are
sampled to find the most consistent answer, which is then used for
the response [18]. Rather than provide a singular answer, we post-
process all LLM responses using traditional deterministic NLP
methods and visualize the processed text for comparative analysis
[19]. Using all responses and directly representing text from the
responses aids visual assessment of what is more and less common
in the textual distribution, thereby helping humans better
understand what the “model has learned.”

3.1  Memorization and Correct Response Visualization

One criticism of LLMs is that they memorize passages of text. For
example, Carlini et al [20] show an LLM regurgitating social
security numbers in training data; Lee et al [21] define and measure
varying types of plagiarism: verbatim, paraphrase and idea.

In HELM [17], the authors randomly prompt models and
measure exact regurgitation and near-exact reproduction across a



breadth of content. However, “Due to token credit constraints, we
only sample one completion per prompt to test extraction. Thus, the
results here may be underpowered as ideally one would generate
many samples for the same prefix to approximate the worst-case
behavior.” As such, their models focus on measures such as
average number of correct tokens, but do not provide insight into
variations in the content of the response.

We wish to go beyond how many words the LLM can repeat
verbatim and understand: a) understand how might we assess the
content and context of LLM verbatim responses; b) assess verbatim
generation in relation to approximate training data; c) characterize
model hallucination; and d) otherwise characterize results and
hypothesize future research. Note that hallucination for LLMs
refers to mistakes in the generated text that are semantically or
syntactically plausible but are incorrect or nonsensical [6].

We prompt the LLM with Extend the following passage from
<book title>: <sentence fragment from book> 60 times, using
default LLM parameters. We used the default temperature 0.7:
initial small tests showed lower temperatures, e.g. 0.2, generated
text which was more consistent but frequently repeated itself within
the same response; while higher temperatures, e.g. 1.2, generated
more varied results but with low matching text. It is feasible to set
temperature to 0 for deterministic responses, but we wanted a range
of non-deterministic responses so that we could investigate the
distribution of responses. We did not adjust other parameters, as we
had limited funding at the time of these experiments. We throw
away exact duplicate responses on the next prompt, but otherwise
retain duplicates if another response occurs between them (i.e.,
reject cached responses by the LLM service). We sort the responses
based on the number of correct words. Figure 2A shows the number
of correct words generated for the prompt: Extend the following
passage from Alice in Wonderland. “Would you tell me, please,
which way I ought to go from here?" 2B shows all the responses for
LLM Cohere and 2C for LLM ChatGPT with matching text in
green, aligned to start of matching response [22,23]. The top row
in B and C is the ground-truth text, with yellow background text

(top left) indicating prompt text and the following green
background text (top right) showing the following original text.
Successive rows are ordered on number of matching words. Many
observations can be made, including:

A. Same number of correct words occur in multiple responses, as
expected in the hypothesis. These are visible as vertical lines in the
line chart or as set width of green text in the text response chart.

B. Multiple levels with same number of correct words. Both
LLMs have multiple common levels of matching words - near 60
and 30 words in this example, i.e. a multimodal distribution. Close
reading shows that the last correct word frequently occurs at the
end of a sentence. This may indicate low confidence in the next
word by the model. This could be validated in future work if the
LLM’s final layer word probabilities are available.

C. Prompt repetition, or parts thereof, occur in responses of both
LLMs in the preamble before the matching text starts.

D. Few zero-word matches: Both LLMs have few responses with
no matching words (ChatGPT 1/60, Cohere 6/60).

E. Gaps and recovery: In Cohere responses, there are 27/60
responses with about 60 matching words, then a portion of the
original text skipped across, followed by more matching words. In
B this gap is indicated with added ellipsis (...) to the generated text
to indicate text has been skipped across. In all cases, the same
source text is skipped across. This particular skip does not occur in
ChatGPT. However, ChatGPT is able to insert a few non-matching
words and then recover, e.g. “said the man,” “as she walked along,”
“the Cat chuckled and said.”

Given that LLMs are trained on broad data available from
Internet sources, it may be feasible to assess frequencies in the
training data based on Internet searches and compare those
frequencies to generated results. Prior work collected 200
quotations from Alice in Wonderland on the Internet (Fig. 58 in
[24]), and the text passage corresponding to Figure 2 is frequently
cited. Note that the text skipped in observation E corresponds to
text which is not quoted on the Internet, and the levels of 30 and 60
words are frequently quoted on the Internet.
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Figure 2: A) Number of correct words per each of 60 responses to the prompt Extend the following passage from Alice in Wonderland. “Would
you tell me, please, which way | ought to go from here?” for LLMs Cohere and ChatGPT. B and C) Response text with exact matching
text in green, errors (hallucinations) in black, skipped text with ellipsis (.....). Cohere (B) and ChatGPT (C).
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Figure 3: Similar to Fig. 2, but prompted to extend a text passage infrequently quoted on the Internet: “They were indeed a queer-looking
party that assembled on the bank--". Compared to Fig. 2, less correct text (green) and more hallucination text (black). See observations.

Using a prompt passage not common on the Internet yields
different results, shown in Figure 3. Additional observations:
G. Fewer correct words are in the response than prior. i.e., both
LLMs have less green text than Figure 2.
H. Top responses have a high number of correct words. Both
LLMs did a few responses with large number of correct words (138
correct words in ChatGPT’s best response). This indicates that the
LLMs do know the long sequences, but not with high probabilities.
Future work can include prompt refinement to improve recovery.
I. Long plateaus (around 20 words) occur in both LLMs, again
coinciding with the end of sentences on close reading.
J. Zero-match hallucinations occur more frequently (ChatGPT
29/60, Cohere 4/60), revealing many LLM hallucinations. Most
hallucinations contain content words associated with the prompt
domain (Wonderland), e.g., prompt responses to “They were indeed
a queer-looking party that assembled on the bank—""
o the inmates of the Pool of Tears, and the melancholy little girl
in the diamond dress.
o for the birds, who were pecking and hopping about the boughs
of the trees, and had driven some of them out of their nests.
o and with that, the Mad Hatter poured Alice a cup of tea, and
they all settled in to enjoy a most curious tea party together.
To characterize hallucinations, a different approach is required as
each hallucination is relatively unique. A simple method is to count
characters (proper nouns) in each response. Fig. 4 shows character
counts in responses corresponding to Fig. 3. The correct responses
are Alice, Mouse and Lory. The LLMs generate a wide range of
characters in their responses, mostly from characters within
Wonderland (e.g. Cat, Queen, Hatter), as well as some non-
Wonderland, non-Carroll characters (e.g. Boy, Bobcat, Unicorn).
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Figure 4: Characters mentioned in responses: green are correct, all
others are hallucinations.

3.2 Broad Knowledge and Mind Map Visualization

We also aim to capture and visualize the LLM’s general topic
knowledge, as this can aid assessing LLM potential for broad
question-answering. As there are many potential topic areas of
knowledge possible for a general prompt, many more responses are
required; we generate 1000, then we process results to extract
commonality using NLP. Finally, we visualize commonality with
mind maps because a) mind maps are text dense and our text-centric
clients require readable content; b) our clients respond positively to
mind maps; ¢) mind maps are pervasive for visually organizing
textual content regarding a topic (e.g., Google search returns 2b
results for mind map).

A traditional NLP approach is used to process responses.
Typically, 100-150 responses were removed, e.g., duplicate
response on the next prompt (i.e. cache), UTF-8 errors, or minimum
length of response (e.g. a trivial response such as “the” or “--”).
Then, we extract proper nouns (NNP sequences) and common
sentence fragments. Common sentence fragments were created by
a) splitting sentences into n-grams of 4+ words, b) counting
repetitions of matching sets of non-stopwords (e.g. “quick brown
fox” and “brown quick fox”), and c¢) collapsing smaller fragments
fully contained in longer fragments when the shorter fragment
occurs less than two times more than the longer fragment, e.g.:
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Original n-gram word sets # tokens frequency

quick brown fox jumps over - lazy dog 7 1
brown fox i quick 3 2
jumped over : lazy dog 4 2
fox jumps over dog 4 80

Collapsed n-gram word sets
quick brown fox jumps over - lazy dog 7 3 =(1+2*3/1+2%4/7)
fox jumps over dog 4 80

The resulting set of collapsed n-gram word sets are then ranked
by (number of tokens + frequency), which favours both short
fragments with high frequency and long fragments with low
frequency. The current algorithm is O(n?), which limits scalability.

A mind-map visualization is then created: a) the original query
is the root; b) level one is proper nouns (up to a threshold, herein
frequency of > 3% of most frequent proper noun); c) level two is
fragments matching proper noun, number of fragments
proportional to frequency of the proper noun with fragments
displayed only once, so that the result is a tree not a graph, and
fragments similar to other fragments not depicted (herein must have
> 30% different words). Node size and color are quantitatively
encoded to indicate frequency; e.g. the largest purple nodes are
500-2000 repetitions; the smallest yellow nodes are two repetitions.

Four examples are shown in Fig. 5. Some observations include:
A. The mind map indicates breadth of knowledge. A mind map
with many branches indicates a prompt to which the LLM has

generated several themes of common responses. A mind map with
few branches or small nodes indicates the LLM has less consistency
in responses (fewer commonalities). The top image shows the LLM
has learned more about Alice in Wonderland compared to quoits
(bottom left). In Alice, nodes are larger and more red-purple hue,
while quoits nodes are small and tend toward yellow, meaning that
the LLM rarely repeats common word sets in quoits responses.

B. Knowledge of a prompt is diverse. E.g., with respect to Alice,
the LLM has a breadth of very different facts, e.g. characters, key
scenes (riverbank, falling in a hole, croquet), author details,
publication, books and movies, etc.; although these facts need to be
compared to ground truth to validate whether the facts are correct...
C. LLMs learn the training data. The last two images are prompts
regarding the first moon landing and the fake moon landing.
Common responses regarding the fake moon landing include: “the
manned moon landing was faked to make people believe in the
government and to make them believe in NASA”.

3.3 LLM Associations Graph

The prior example required much post-processing of the response.
Instead, LLMs can be prompted to organize and categorize a
response, which in turn facilitates processing and visualization. For
example, ChatGPT, when prompted “What are 10 associations
with Alice in Wonderland,” almost consistently replies with
enumerated key terms, a colon, and descriptions. e.g.:
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Figure 6: Graph of associations with Alice in Wonderland, with descriptions regarding characters, author, settings and themes.

1. Lewis Carroll: The author of the book, whose real name was
Charles Lutwidge Dodgson.

2. Fantasy: Alice in Wonderland is a classic work of fantasy
literature, with many surreal and nonsensical elements.

3. Tea Party: The Mad Hatter's tea party is one of the most famous
scenes in the book, ...

After tweaking the prompt to force the output format, the LLM can
be repeatedly prompted, then repeated key terms counted (i.e.
associations). Thereafter, most common associations can be
directly prompted as well. Each association can be considered an
edge and a graph constructed (Fig. 6). Common associations to
Alice in Wonderland include characters (Queen of Hearts, White
Rabbit, Cheshire Cat), themes (fantasy), settings (rabbit hole),
author (Lewis Carroll), and errors (Tweedledee and Jabberwocky,
neither of which occur in Alice in Wonderland).

4 DISCUSSION

Our client performs text analysis where close reading of text is
required. They want to explore the breadth and depth of content
LLMs know regarding a topic, with visual representations that
afford close reading across response variations. The purpose is to
gain insights to generate additional research questions. There are
many questions, here organized by Munzner’s nested model [25]:
A. Domain problem: There are domain problems beyond specific
and general knowledge extents, e.g. summarization, explanation,
question answering, etc. Furthermore:

e  LLM output characterizations such as gaps and insertions
(3.1.E) may be useful for LLM detection as current LLM
detectors are still problematic [26].

e LLMs may have different characteristics in their

responses (3.1); can the responses be visualized to
facilitate analysis of the differences between LLMs:
variance in phrasing, deviation and recovery, etc.
B. Task, data, operation abstraction and design.
e  Will this work in a year or two? As LLM capability
increases will this analysis need to be done the level of
paragraphs, sections, or chapters? Maybe the techniques

shown will work but require Hiperwall scale displays to
show results e.g. [27].

e In the plagiarism examples (Figs. 2,3), the number of
correct words have plateaus. Can these plateaus be better
characterized, beyond “end of sentence”?

e Are there automated ways to create and visualize

relationships between the responses and implicit training
data, e.g. frequencies, specific phrases, etc. Similarly, can
connections be depicted between the LLM knowledge,
fact-checking validation, and known misinformation
3.2.0)?

C. Encoding and interaction.

e What visualization techniques can be used to indicate
where LLM response text is verbatim, paraphrased,
wandering off-topic, skipping relevant content,
recovering the main thread, full hallucination, and so on?
Are there visual analyses for commonality in
hallucinations? E.g., can the mind maps be extended to
assess hallucinations?

How can these techniques aid prompt engineering? How
can tens or hundreds of prompt variants be visually
compared?

D. Algorithm design. These techniques use the exact same query.

e  Parameter space exploration. A variety of temperatures,

k, etc., can be more methodically explored, however,
generating 1000 results per permutation can be
prohibitive, although this may be offset by heuristics
such as a beam search. Alternatively, one may
hypothesize if the non-deterministic responses resemble
a distribution, adjusting parameters such as temperature
and k will change the shape of the distribution, but the
visual techniques provided here are still relevant as they
are essentially views of textual distributions.
Prompt engineering can be used to improve quality; e.g.,
first attempt at plagiarism did not include the book title
and fared poorly, e.g. prompt: “Extend the following
passage: Would you tell me, please, which way I out to o
from here?” response: “You ought to go north.”



5 CONCLUSION

LLMs are rapidly evolving. New visualization techniques are
required to understand the extents of the models’ knowledge, and
these techniques need to support users that require close reading of
detailed text. Visualization techniques focusing on LLM repetitions
can better characterize what the LLMs know; and furthermore
depicting these repetitions textually facilitates inspection beyond
“best response” to close reading of many full responses and parts
thereof. Text-dense visualizations can be well suited for close
reading and comparison across responses: 1) for plagiarism, the
visual alignment of each response with proportion of correct words
in green facilitates a macro overview of the correct word
distribution and close reading anywhere along the distribution; 2)
mind-maps (and graphs) can provide scalability through
aggregation of commonality, provide a visual structure for
traversing across connected concepts, and also provide readable
sentences.
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