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ABSTRACT 
The breadth and depth of knowledge learned by Large Language 
Models (LLMs) can be assessed through repetitive prompting and 
visual analysis of commonality across the responses. We show 
levels of LLM verbatim completions of prompt text through 
aligned responses, mind-maps of knowledge across several areas in 
general topics, and an association graph of topics generated directly 
from recursive prompting of the LLM. 
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1 INTRODUCTION 
Billions of dollars are being invested in Large Language Models 
(LLMs) such as ChatGPT ($10b), Character.AI ($1b), and Cohere 
($½b) [1,2,3]. These models are subject to criticisms such as 
plagiarism [4], bias [5], hallucination [6], and hacking via prompt 
injection [7].  

LLMs' many unknowns and uncertainties have prompted claims 
of possible artificial general intelligence [8], and researchers have 
asked for a pause on giant AI experiments [9].  There is a need to 
better understand what these models know: content, idioms, style, 
reasoning, and so forth. However, commercial LLMs are black-box 
models; the internals cannot be directly observed.  

A client focused on close analysis of textual content challenged 
us to probe and illustrate the breadth and depth of content LLM’s 
know regarding a topic. Our contribution is a method and a set of 
visualizations to understand what LLMs have learned. Instead of 
focusing on model breadth (e.g. [8]) or tweaking prompts to tune 
results (e.g. [10]), we focus on repeating the same prompt 60–1000 
times to generate a large response set. We then create 
representations of the textual response distribution to:  
• Show the extents and contents of what LLM can repeat verbatim, 

indicative of potential content plagiarism. 
• Characterize the commonality across responses, indicative of 

higher weights inside the LLM - i.e., what the model has learned. 
• Reveal what associations are most frequent when the LLM 

hallucinates, to get a sense of non-factual associations. 

2 BACKGROUND 
The visual analytics community has researched aspects of LLMs 
over the last half decade. Some researchers have focused on LLM 
internals, such as attention of individual nodes or the latent space 
of successive layers in the neural model [11,12]. Some focus on 
diagnostics of the output, such as GLTR or LMDiff [13,14]. Some 
focus on the input, such as prompt engineering [15]. These analyses 
are not mutually exclusive; e.g., LIT is a general extensible tool 
providing dataset exploration as well as analysis of internals such 
as salience maps and attention heads [16]. 
    Beyond visual analytics, language models can be assessed with 
metrics for specific tasks; see HELM for a comprehensive set of 
metrics-based analyses of LLMs [17]. 

3 REPETITIVE APPROACH 
We contend commercial LLMs will become black boxes. 
Commercial demands to retain trade-secrets to maximize profits 
will eventually require that model internals and output word 
probabilities will not be accessible in these systems. 
    LLMs are giant statistical models. Trivially, an LLM is a set of 
massive matrices and connection weights into which token 
sequences are inputs and outputs generated. A simple analog is a 
Galton board (Fig. 1), with the model represented by the pegs 
(green), the input (top), and the output (bottom). Given sufficient 
inputs, the outputs approximate a normal distribution.  

    
Figure 1. Galton board as an analog of an LLM. 

Similarly, we hypothesize we can prompt an LLM 60–1000 
times with the exact same prompt. Because the LLM is non-
deterministic, results will differ, but pathways in the model that are 
more heavily weighted will be more frequently expressed. This is 
similar to self-consistency in LLMs, where multiple responses are 
sampled to find the most consistent answer, which is then used for 
the response [18]. Rather than provide a singular answer, we post-
process all LLM responses using traditional deterministic NLP 
methods and visualize the processed text for comparative analysis 
[19]. Using all responses and directly representing text from the 
responses aids visual assessment of what is more and less common 
in the textual distribution, thereby helping humans better 
understand what the “model has learned.”  

3.1 Memorization and Correct Response Visualization 
One criticism of LLMs is that they memorize passages of text. For 
example, Carlini et al [20] show an LLM regurgitating social 
security numbers in training data; Lee et al [21] define and measure 
varying types of plagiarism: verbatim, paraphrase and idea.  

In HELM [17], the authors randomly prompt models and 
measure exact regurgitation and near-exact reproduction across a 
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breadth of content. However, “Due to token credit constraints, we 
only sample one completion per prompt to test extraction. Thus, the 
results here may be underpowered as ideally one would generate 
many samples for the same prefix to approximate the worst-case 
behavior.” As such, their models focus on measures such as 
average number of correct tokens, but do not provide insight into 
variations in the content of the response. 

We wish to go beyond how many words the LLM can repeat 
verbatim and understand: a) understand how might we assess the 
content and context of LLM verbatim responses; b) assess verbatim 
generation in relation to approximate training data; c) characterize 
model hallucination; and d) otherwise characterize results and 
hypothesize future research. Note that hallucination for LLMs 
refers to mistakes in the generated text that are semantically or 
syntactically plausible but are incorrect or nonsensical [6]. 

We prompt the LLM with Extend the following passage from 
<book title>: <sentence fragment from book> 60 times, using 
default LLM parameters. We used the default temperature 0.7: 
initial small tests showed lower temperatures, e.g. 0.2, generated 
text which was more consistent but frequently repeated itself within 
the same response; while higher temperatures, e.g. 1.2, generated 
more varied results but with low matching text. It is feasible to set 
temperature to 0 for deterministic responses, but we wanted a range 
of non-deterministic responses so that we could investigate the 
distribution of responses. We did not adjust other parameters, as we 
had limited funding at the time of these experiments. We throw 
away exact duplicate responses on the next prompt, but otherwise 
retain duplicates if another response occurs between them (i.e., 
reject cached responses by the LLM service). We sort the responses 
based on the number of correct words. Figure 2A shows the number 
of correct words generated for the prompt: Extend the following 
passage from Alice in Wonderland. “Would you tell me, please, 
which way I ought to go from here?" 2B shows all the responses for 
LLM Cohere and 2C for LLM ChatGPT with matching text in 
green, aligned to start of matching response [22,23]. The top row 
in B and C is the ground-truth text, with yellow background text 

(top left) indicating prompt text and the following green 
background text (top right) showing the following original text. 
Successive rows are ordered on number of matching words. Many 
observations can be made, including:  
A. Same number of correct words occur in multiple responses, as 
expected in the hypothesis. These are visible as vertical lines in the 
line chart or as set width of green text in the text response chart. 
B. Multiple levels with same number of correct words. Both 
LLMs have multiple common levels of matching words - near 60 
and 30 words in this example, i.e. a multimodal distribution. Close 
reading shows that the last correct word frequently occurs at the 
end of a sentence. This may indicate low confidence in the next 
word by the model. This could be validated in future work if the 
LLM’s final layer word probabilities are available. 
C. Prompt repetition, or parts thereof, occur in responses of both 
LLMs in the preamble before the matching text starts. 
D. Few zero-word matches: Both LLMs have few responses with 
no matching words (ChatGPT 1/60, Cohere 6/60). 
E. Gaps and recovery: In Cohere responses, there are 27/60 
responses with about 60 matching words, then a portion of the 
original text skipped across, followed by more matching words. In 
B this gap is indicated with added ellipsis (…) to the generated text 
to indicate text has been skipped across. In all cases, the same 
source text is skipped across. This particular skip does not occur in 
ChatGPT. However, ChatGPT is able to insert a few non-matching 
words and then recover, e.g. “said the man,” “as she walked along,” 
“the Cat chuckled and said.” 
    Given that LLMs are trained on broad data available from 
Internet sources, it may be feasible to assess frequencies in the 
training data based on Internet searches and compare those 
frequencies to generated results. Prior work collected 200 
quotations from Alice in Wonderland on the Internet (Fig. 58 in 
[24]), and the text passage corresponding to Figure 2 is frequently 
cited. Note that the text skipped in observation E corresponds to 
text which is not quoted on the Internet, and the levels of 30 and 60 
words are frequently quoted on the Internet.  

Figure 2: A) Number of correct words per each of 60 responses to the prompt Extend the following passage from Alice in Wonderland. “Would 
you tell me, please, which way I ought to go from here?” for LLMs Cohere and ChatGPT. B and C) Response text with exact matching 
text in green, errors (hallucinations) in black, skipped text with ellipsis (…..). Cohere (B) and ChatGPT (C). 

 



    Using a prompt passage not common on the Internet yields 
different results, shown in Figure 3. Additional observations: 
G. Fewer correct words are in the response than prior. i.e., both 
LLMs have less green text than Figure 2.  
H. Top responses have a high number of correct words. Both 
LLMs did a few responses with large number of correct words (138 
correct words in ChatGPT’s best response). This indicates that the 
LLMs do know the long sequences, but not with high probabilities. 
Future work can include prompt refinement to improve recovery. 
I. Long plateaus (around 20 words) occur in both LLMs, again 
coinciding with the end of sentences on close reading.   
J. Zero-match hallucinations occur more frequently (ChatGPT 
29/60, Cohere 4/60), revealing many LLM hallucinations. Most 
hallucinations contain content words associated with the prompt 
domain (Wonderland), e.g., prompt responses to “They were indeed 
a queer-looking party that assembled on the bank—”: 
• the inmates of the Pool of Tears, and the melancholy little girl 

in the diamond dress. 
• for the birds, who were pecking and hopping about the boughs 

of the trees, and had driven some of them out of their nests. 
• and with that, the Mad Hatter poured Alice a cup of tea, and 

they all settled in to enjoy a most curious tea party together. 
To characterize hallucinations, a different approach is required as 
each hallucination is relatively unique. A simple method is to count 
characters (proper nouns) in each response. Fig. 4 shows character 
counts in responses corresponding to Fig. 3. The correct responses 
are Alice, Mouse and Lory. The LLMs generate a wide range of 
characters in their responses, mostly from characters within 
Wonderland (e.g. Cat, Queen, Hatter), as well as some non-
Wonderland, non-Carroll characters (e.g. Boy, Bobcat, Unicorn). 

 
Figure 4: Characters mentioned in responses: green are correct, all 

others are hallucinations. 

3.2 Broad Knowledge and Mind Map Visualization 
We also aim to capture and visualize the LLM’s general topic 
knowledge, as this can aid assessing LLM potential for broad 
question-answering. As there are many potential topic areas of 
knowledge possible for a general prompt, many more responses are 
required; we generate 1000, then we process results to extract 
commonality using NLP. Finally, we visualize commonality with 
mind maps because a) mind maps are text dense and our text-centric 
clients require readable content; b) our clients respond positively to 
mind maps; c) mind maps are pervasive for visually organizing 
textual content regarding a topic (e.g., Google search returns 2b 
results for mind map). 
    A traditional NLP approach is used to process responses. 
Typically, 100–150 responses were removed, e.g., duplicate 
response on the next prompt (i.e. cache), UTF-8 errors, or minimum 
length of response (e.g. a trivial response such as “the” or “--”). 
Then, we extract proper nouns (NNP sequences) and common 
sentence fragments. Common sentence fragments were created by 
a) splitting sentences into n-grams of 4+ words, b) counting 
repetitions of matching sets of non-stopwords (e.g. “quick brown 
fox” and “brown quick fox”), and c) collapsing smaller fragments 
fully contained in longer fragments when the shorter fragment 
occurs less than two times more than the longer fragment, e.g.:  

Figure 3: Similar to Fig. 2, but prompted to extend a text passage infrequently quoted on the Internet: “They were indeed a queer-looking 
party that assembled on the bank--”. Compared to Fig. 2, less correct text (green) and more hallucination text (black). See observations. 

 



  
    The resulting set of collapsed n-gram word sets are then ranked 
by (number of tokens + frequency), which favours both short 
fragments with high frequency and long fragments with low 
frequency. The current algorithm is O(n2), which limits scalability.  
    A mind-map visualization is then created: a) the original query 
is the root; b) level one is proper nouns (up to a threshold, herein 
frequency of > 3% of most frequent proper noun); c) level two is 
fragments matching proper noun, number of fragments 
proportional to frequency of the proper noun with fragments 
displayed only once, so that the result is a tree not a graph, and 
fragments similar to other fragments not depicted (herein must have 
> 30% different words). Node size and color are quantitatively 
encoded to indicate frequency; e.g. the largest purple nodes are 
500-2000 repetitions; the smallest yellow nodes are two repetitions. 
    Four examples are shown in Fig. 5. Some observations include: 
A. The mind map indicates breadth of knowledge. A mind map 
with many branches indicates a prompt to which the LLM has 

generated several themes of common responses. A mind map with 
few branches or small nodes indicates the LLM has less consistency 
in responses (fewer commonalities). The top image shows the LLM 
has learned more about Alice in Wonderland compared to quoits 
(bottom left). In Alice, nodes are larger and more red-purple hue, 
while quoits nodes are small and tend toward yellow, meaning that 
the LLM rarely repeats common word sets in quoits responses. 
B. Knowledge of a prompt is diverse. E.g., with respect to Alice, 
the LLM has a breadth of very different facts, e.g. characters, key 
scenes (riverbank, falling in a hole, croquet), author details, 
publication, books and movies, etc.; although these facts need to be 
compared to ground truth to validate whether the facts are correct… 
C. LLMs learn the training data. The last two images are prompts 
regarding the first moon landing and the fake moon landing. 
Common responses regarding the fake moon landing include: “the 
manned moon landing was faked to make people believe in the 
government and to make them believe in NASA”. 

3.3 LLM Associations Graph 
The prior example required much post-processing of the response. 
Instead, LLMs can be prompted to organize and categorize a 
response, which in turn facilitates processing and visualization. For 
example, ChatGPT, when prompted “What are 10 associations 
with Alice in Wonderland,” almost consistently replies with 
enumerated key terms, a colon, and descriptions. e.g.: 

Figure 5: Mind maps of common responses to 1000 prompts to an LLM. Top) The plot synopsis of Alice in Wonderland. Bottom left) A 
detailed description of quoits. Bottom middle) An explanation of the first moon landing. Bottom right) An explanation of the fake moon 
landing. The LLM does not know much about quoits: it knows more about the first and fake moon landings. 

 



1. Lewis Carroll: The author of the book, whose real name was 
Charles Lutwidge Dodgson. 
2. Fantasy: Alice in Wonderland is a classic work of fantasy 
literature, with many surreal and nonsensical elements. 
3. Tea Party: The Mad Hatter's tea party is one of the most famous 
scenes in the book, … 
After tweaking the prompt to force the output format, the LLM can 
be repeatedly prompted, then repeated key terms counted (i.e. 
associations). Thereafter, most common associations can be 
directly prompted as well. Each association can be considered an 
edge and a graph constructed (Fig. 6). Common associations to 
Alice in Wonderland include characters (Queen of Hearts, White 
Rabbit, Cheshire Cat), themes (fantasy), settings (rabbit hole), 
author (Lewis Carroll), and errors (Tweedledee and Jabberwocky, 
neither of which occur in Alice in Wonderland). 

4 DISCUSSION 
Our client performs text analysis where close reading of text is 
required. They want to explore the breadth and depth of content 
LLMs know regarding a topic, with visual representations that 
afford close reading across response variations. The purpose is to 
gain insights to generate additional research questions. There are 
many questions, here organized by Munzner’s nested model [25]: 
A. Domain problem: There are domain problems beyond specific 
and general knowledge extents, e.g. summarization, explanation, 
question answering, etc. Furthermore: 

• LLM output characterizations such as gaps and insertions 
(3.1.E) may be useful for LLM detection as current LLM 
detectors are still problematic [26]. 

• LLMs may have different characteristics in their 
responses (3.1); can the responses be visualized to 
facilitate analysis of the differences between LLMs: 
variance in phrasing, deviation and recovery, etc.  

B. Task, data, operation abstraction and design.  
• Will this work in a year or two? As LLM capability 

increases will this analysis need to be done the level of 
paragraphs, sections, or chapters? Maybe the techniques 

shown will work but require Hiperwall scale displays to 
show results e.g. [27].  

• In the plagiarism examples (Figs. 2,3), the number of 
correct words have plateaus. Can these plateaus be better 
characterized, beyond “end of sentence”? 

• Are there automated ways to create and visualize 
relationships between the responses and implicit training 
data, e.g. frequencies, specific phrases, etc. Similarly, can 
connections be depicted between the LLM knowledge, 
fact-checking validation, and known misinformation 
(3.2.C)? 

C. Encoding and interaction.  
• What visualization techniques can be used to indicate 

where LLM response text is verbatim, paraphrased, 
wandering off-topic, skipping relevant content, 
recovering the main thread, full hallucination, and so on?  

• Are there visual analyses for commonality in 
hallucinations? E.g., can the mind maps be extended to 
assess hallucinations? 

• How can these techniques aid prompt engineering? How 
can tens or hundreds of prompt variants be visually 
compared?  

D. Algorithm design. These techniques use the exact same query. 
• Parameter space exploration. A variety of temperatures, 

k, etc., can be more methodically explored, however, 
generating 1000 results per permutation can be 
prohibitive, although this may be offset by heuristics 
such as a beam search. Alternatively, one may 
hypothesize if the non-deterministic responses resemble 
a distribution, adjusting parameters such as temperature 
and k will change the shape of the distribution, but the 
visual techniques provided here are still relevant as they 
are essentially views of textual distributions. 

• Prompt engineering can be used to improve quality; e.g., 
first attempt at plagiarism did not include the book title 
and fared poorly, e.g. prompt: “Extend the following 
passage: Would you tell me, please, which way I out to o 
from here?” response: “You ought to go north.”  

Figure 6: Graph of associations with Alice in Wonderland, with descriptions regarding characters, author, settings and themes. 
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5 CONCLUSION 
LLMs are rapidly evolving. New visualization techniques are 
required to understand the extents of the models’ knowledge, and 
these techniques need to support users that require close reading of 
detailed text. Visualization techniques focusing on LLM repetitions 
can better characterize what the LLMs know; and furthermore 
depicting these repetitions textually facilitates inspection beyond 
“best response” to close reading of many full responses and parts 
thereof. Text-dense visualizations can be well suited for close 
reading and comparison across responses: 1) for plagiarism, the 
visual alignment of each response with proportion of correct words 
in green facilitates a macro overview of the correct word 
distribution and close reading anywhere along the distribution; 2) 
mind-maps (and graphs) can provide scalability through 
aggregation of commonality, provide a visual structure for 
traversing across connected concepts, and also provide readable 
sentences.  
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