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Abstract— Graph visualizations increase the perception of entity relationships in a network. However, as graph size and density 
increases, readability rapidly diminishes. In this paper, we present a tile-based visual analytic approach that leverages cluster 
computing to create large-scale, interactive graph visualizations in modern web browsers. Our approach is optimized for analyzing 
community structure and relationships. 
Index Terms—Large data visualization, graph/network data, data clustering, distributed computing, multi-resolution techniques, 
scalability issues, interaction design, zooming and navigation techniques

 

INTRODUCTION 
As scientists, government agencies, and businesses increasingly 
require insight from massive sets of relational data, there is a 
growing need for scalable visual graph analytics that can reveal 
patterns and anomalies in big data. However, visualizing terabytes or 
even petabytes of information is not without prohibitive perceptual 
and computational costs: traditional graph visualization tools that run 
on a single workstation often cannot process or render massive data 
and, when they do, produce overcrowded “hairball” results with 
ineffective labelling that make nuanced interaction and investigation 
extremely difficult. 

Graph visualizations are frequently employed to support 
understanding of relationships between entities. Of particular 
importance is the detection of communities of highly related nodes 
and awareness of their relations both internally and externally to 
other communities. However, as the size and density of a graph 
increases the ability to perceive and understand these nuanced 
relations quickly deteriorates. 

Our approach to addressing these issues is to leverage open-
source cluster-computing frameworks (Apache Hadoop [1] and 
Spark [2]) and a tile-based visual analytics methodology [3][4] to 
create interactive large-scale graph visualizations by: 1) extracting 
hierarchical communities in the data; 2) applying a distributed, 
recursive layout algorithm to align nodes according to their 
hierarchical community membership; and 3) producing a two-
dimensional, multi-scale graph visualization with a familiar, web-
based map interaction scheme that supports simple pan and zoom 
navigation. 

1 BACKGROUND 
While computational algorithms can quickly derive complex answers 
from massive node-link datasets, they continue to lag behind the 
human ability to perceive and understand visual patterns and 
anomalies [5]. As such, technical and non-technical audiences alike 
require interactive visual graph analytics to: 

• Assess the believability or perception of truth in answers 
computed with machine learning. 

• Place the aforementioned answers in the proper context. 
• Discover nuances or patterns that are not typically identified 

by computational algorithms. 
By placing node-link data in an interactive visual analytic tool, 

users are able to apply their natural visual acuity to identify clusters 
and communities of related nodes, discover closely connected nodes 

that suggest similarity or affinity, and understand the structure of 
organizations [5]. This visual mapping of data allows users to 
comprehend the spatial representation of complex data, retain mental 
models of data organization, and detect anomalies and patterns for 
further investigation.  

Many current graph visualization tools are designed to operate on 
a single workstation. These tools are limited to node-link data that 
can fit in the memory of a single machine, which often means they 
cannot scale past thousands of nodes [6]. This places rigid 
restrictions on a user’s ability to work with big data. 

More recently, graph analytic tools (e.g., GraphCT and SNAP) 
are taking advantage of distributed and parallel computing systems to 
handle node-link datasets with millions or billions of nodes [6]. In 
addition to scaling to massive data sizes, these approaches are fault-
tolerant preventing costly restarting of computations [7]. 

Large-scale graph data pose challenges to existing visual graph 
analysis approaches, requiring new techniques to overcome the 
following issues: 

• Resource-intensive computations are required to establish 
optimal graph layouts that reveal structures such as 
communities and connectivity. 

• Community clustering and layouts are typically applied 
separately, causing occlusion of clusters and loss of 
information about the structure of individual clusters and 
inter-cluster connectivity. 

• Large graphs are too big to fit in memory of a single 
machine. 

• Rendering graphs of millions+ of nodes and edges is time 
consuming. Showing all nodes and links often results in 
hairballs that hinder sense making. 

1.1 Related Work 
Previous work has investigated community-based layouts for large 
graph visualizations. In HC-drawing [8], graphs are hierarchically 
clustered, and a graph layout algorithm aligns nodes according to 
community membership. Fitted-Rectangles [9] uses a similar non-
hierarchical approach, but also provides aggregation of node links. In 
Group-in-a-Box [10], nodes are grouped either semantically along 
attributes of interest or community, and then laid out using a treemap 
space filling technique.  NodeTrix [11] visualizes graphs with 
communities as nodes and links depicting inter-community 
connections. Community nodes are visualized as adjacency matrices 
to reveal community structure. Zame [12] uses a tile-based approach 
to provide an interactive multi-scale visualization of a graph 
adjacency matrix.  

Our work differs from previous approaches: 1) we leverage 
cluster computing to efficiently cluster, lay out and compute 
analytics on graphs from datasets scaling to terabytes; 2) a tile-based 
visualization approach facilitates efficient interactive multi-scale 
graph analysis of node-link diagrams; and 3) flexible tile-based 
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visual analytics provide information overlays summarizing 
community attributes. 

2 TILE-BASED VISUAL ANALYTICS 
Our approach to creating interactive visualizations of massive node-
link graph data employs tile-based visual analytics to enable 
investigation using common web browsers. The methodology is 
implemented as open-source software built on Apache Spark and 
Hadoop [13]. 

A cluster-computing and parallelization framework generates 
multi-resolution tiled datasets with analytics and aggregate 
summaries for each tile. Tiles are served and rendered on demand as 
images in an interactive web-based map client. The client allows 
users to pan and zoom through increasingly detailed views of the 
source data, a “tile pyramid” that spans global to local scales, much 
like Google Maps offers both aggregate views of the entire world 
and street-level depictions. 

The tile generation process uses Apache Spark to convert 
character-delimited or GraphML source data into a set of Apache 
Avro data tiles that summarize the individual data points at multiple 
resolutions. A tile service delivers the tiled data to the web client 
either as a set of rasters or a JSON payload for client-side rendering. 

Users can filter tile views by attributes such as time to apply 
visual metaphors on the fly. All analytic overlays leverage the same 
underlying data. Tile-based visual analytics support cross-plot, 
geospatial, time series, and force-directed graph layouts of big data. 

3 VISUAL ANALYSIS OF GRAPH DATA 
Generating a visual graph analytic (Fig. 1) is a multi-stage process of 
detecting communities of nodes, laying them out in a hierarchical 
manner, and generating the data tiles used to serve the transformed 
source data to the web client for presentation. 

 

 
Fig. 1 Graph Tiling Pipeline 

Once all of the stages have been executed, an efficient 
representation of the graph data is available for interaction in any 
modern web browser. 

3.1 Hierarchical Community Clustering 
To detect and cluster nodes that are highly connected, we apply a 
distributed version of the Louvain Modularity algorithm [14] to the 
source data using the Apache Spark GraphX library. Strongly 
connected nodes form communities at several different hierarchical 
levels: low-level communities are detected from the raw data, those 
communities are then clustered accordingly at the next highest level, 
and so on up the chain to the highest (global) hierarchical level.  

This stage is optional if the source data already has location 
information (e.g., x/y coordinates) associated with the nodes. 

3.2 Hierarchical Graph Layout 
Informed by the network and community structure, the Hierarchical 
Graph Layout stage positions the nodes to highlight visual groupings 
of communities. A distributed, recursive, force-directed layout 
algorithm was developed to lay out communities from the top-level 
hierarchy down to raw nodes. 

 

 
Fig. 3 Hierarchical Graph Layout 

As shown in Fig. 3, each community is drawn as a virtual node 
sized to indicate the number of nodes that it contains. The force-
directed algorithm [15] simulates repellent forces between nodes and 
spring forces on links to naturally group and cluster connected nodes. 
The algorithm starts with the top-level communities, laying them out 
independently of the lower-level structure. The next lowest level of 
communities is then laid out within the spatial constraints of the 
parent level, and so on. 

Applying a recursive force-directed layout to communities 
reduces hairball results by increasing visual separation and 
distinguishing communities and the relationships between them. The 
resulting proximity reflects strength of relationship. Further, the 
recursive nature of the layout algorithm is parallelizable into 
independent layout subtasks that can be efficiently computed. 

The Hierarchical Graph Layout stage is run on Apache Spark, 
allowing parallelization and reducing computational costs. 

As with the Hierarchical Community Clustering, this stage is not 
required if the source data already has location information 
associated with the nodes. 

3.3 Graph Tile Generation 
Once the source graph data has been clustered and laid out, the 
positioned node and links are passed to the Tile Generation 
component to create a hierarchical pyramid of data tiles that 
summarize the graph at multiple resolutions, from global to local 
scales. Tiling data instead of graphics allows for responsive 
interfaces with capabilities such as runtime filtering, which can be 
used, for example, to filter out all links below a certain weight. 

The tile hierarchy created during this stage enables smart 
decisions about the level of detail of nodes and links in the user 
interface, which can increase rendering efficiency. For example, low-
level or off-screen links can be omitted at each zoom level. 
Moreover, only the data necessary to render the current views needs 
to be delivered to the browser, making it possible to explore billions 
of linked entities at interactive speeds. 

Massive graph tile pyramids are saved in an Avro format, 
typically to an HBase table to enable distributed file storage and 
scalability to billions of tiles. 

 

    
Fig. 2 Graph layout elements: (a) nodes, (b) intra-community links, (c) inter-community links, and (d) communities and labels 



3.4 Tile-Based Visual Analytics for Graphs 
When the Tile Generation stage is complete, the tile pyramid is 

served to the web client, where the entire graph is made available for 
analysis through pan, zoom and layer interactions familiar to web-
based map services. Each visual element type is displayed as a 
separate layer that can be independently filtered or hidden resulting 
in an interactive graph with a trillion or more “pixels” of resolution. 

Nodes (Fig. 2a) are spatially arranged to reflect relationships and 
the communities to which they belong. Node weight may be 
optionally indicated through color. A consistent pixel size is used for 
display at each zoom level to ensure clarity. Controls are provided to 
dynamically adjust node diameter for greater or lesser emphasis. 

Intra-community (Fig. 2b) and inter-community (Fig. 2c) links 
are rendered as separate layers, allowing end users to tailor relative 
emphasis to support analytic interest. Links can be weighted to 
represent the strength of relationships between the nodes they 
connect, and are visualized as a heatmap to depict strength, 
distribution and density of clusters of edges. To avoid visual clutter 
that can otherwise interfere with visibility of local connections, links 
leading to distant off screen nodes can be attenuated using opacity 
fall off. 

Communities (Fig. 2d) are treated as virtual nodes within the 
graph layout. They are denoted by an interactive circular boundary 
that reveals additional community metadata when clicked. Each 
community is sized according to the number of child nodes that it 
contains. Zooming in on a community reveals sub-communities and 
nodes that are aggregated together at higher levels. This increasingly 
detailed hierarchical structure helps to maintain high rendering 
speeds in the browser and introduces an efficient map-service 
paradigm that serves only the data needed for the current viewport. 

To add semantics to the display, community labels are derived 
hierarchically from the underlying child node with highest weighted 
degree centrality (i.e., sum of weights of incident edges for a give 
node). Additional metadata for a community can be presented such 
as a distribution of its member attributes. 

To better express the character of communities, additional tile-
based analytics can be overlaid on top of the graph. Each analytic 
summarizes key attributes about the nodes or links underlying the 
corresponding tile. These overlays summarize aspects with which to 
characterize visible communities, such as common topics of 
conversation shown as a word cloud. 

4 PROOF-OF-CONCEPT APPLICATIONS 
Our tile-based visual analytic approach to enabling analysis of large-
scale graphs was developed empirically over time using a variety of 
real-world applications. We present two examples involving social 
media and e-commerce data. Chelsea FC Fan Communities 
examines social media influence amongst individuals and 
organizations using the Twitter social network, and Amazon Product 
Affinity maps clusters of products that interest the same people. 

4.1 Chelsea FC Fan Communities 
The Chelsea FC Fan Communities application attempts to highlight 
communities within the sphere of Twitter users who used Chelsea 
Football Club keywords in tweets during 2014. In total, the dataset 
contains 248,747,072 tweets with 554,430 unique account nodes 
(users). The application contains 100,700 relationships (links) 
between users who have mentioned each other in tweets. 

4.1.1 Geospatial Mapping 
The first approach to discovering communities in the Chelsea FC 
data involved mapping the geo-located tweet data based on 
latitude/longitude coordinates (Fig. 5). Directed, clockwise arcs 
between tweet locations indicate user mentions, while arc color 
indicates tweet density (dark blue for low density and white for high 
density). 

Tiling tweets using their geolocation data allows for geospatial 
analysis of social network data and avoids the computational cost of 

generating a graph layout. Displaying the graph as a map focuses on 
spatial communities and patterns, allowing end users to analyze the 
high-level geographic structure and regional communication flow 
(e.g., between large communities in England, Spain, and West 
Africa). 

Geolocated data is aggregated across several increasingly detailed 
heatmap views. End users can drill down from a global view to street 
level, revealing patterns at each scale. 

Additional community characterization data is provided in tile 
analytic overlays. For example, a Player Mentions Sentiment overlay 
summarizes the sentiments (positive, negative, or neutral) of tweets 
within the region that referenced specific players. Drill down 
information reveals individual posts and trends over time. 

 

 
Fig. 5 Geospatial mapping of Chelsea FC Twitter mentions with 
directed arcs representing user mentions with top hashtag overlays 

4.1.2 Community Graph 
Geospatial layouts of social media are limited in that they cannot plot 
posts lacking location data, and only 2-3% of Twitter messages are 
geocoded [16]. An alternative approach to tiling the Chelsea FC Fan 
Communities is to use a graph layout, which supports all of the 
tweets plotted in the geospatial map and adds tweets that do not have 
latitude/longitude data. In contrast to the geospatial layout, the layout 
of the community graph is determined by the structure of related 
users, where directional arc links and the proximity of communities 
indicate the strength of the relationship between them. 

The graph layout reveals several details that are obscured in the 
map layout. First, a multitude of disconnected groups exist outside 
the core Twitter activity, indicating that they do not interact with the 
community at large (Fig. 6a). 

 

   
Fig. 6 Graph layout features (a) fringe communities and (b) tile analytic 
overlays 

Each circle in the graph is a community of nodes with high 
cohesiveness. Reviewing community labels can reveal unexpected 
correlations; for example, the most central community in the Chelsea 
application appears to be defined by its users’ shared interest in a 
rival football club, Manchester City FC. 

As with the geographic plot, the graph layout supports multiple 
tile analytic overlays that provide more context of the behaviours and 
trends of the underlying communities. In Fig. 6b, a BBC Sports 
community appears to correlate with a high degree of tweets with the 



hashtag #corrie, a reference to the popular British soap opera, 
Coronation Street.  

4.2 Amazon Product Affinity 
The Product Affinity application is based on a Stanford dataset of 
Amazon product information. Compiled over nine years, the dataset 
includes anonymized customer product reviews and links between 
products based on co-purchase patterns (i.e., “customers who bought 
this also bought...”). Nodes in the Amazon graph represent products 
and anonymized customers, while the links indicate weighted 
customer reviews and co-purchases. The application attempts to 
represent spheres of interest among Amazon customers. 

While the Amazon Product Affinity dataset (with 2,372,409 
nodes and 9,909,551 links) is an order of magnitude larger than the 
Chelsea FC Fan Communities dataset, the speed and interactivity of 
the application remains unchanged.  

4.2.1 Graph Layout 
The graph layout of the Amazon dataset suggests product affinity. 
The closeness of individual products and communities in the graph 
indicates co-purchase habits. Reviewing the hierarchical 
communities or related products can reveal social demographic data 
about customers. 
 

 
Fig. 7 Community labels reveal co-purchase habits 

For example, zooming in on a community (Fig. 7) reveals 
clusters of products marketed primarily at young adults: rap and 
alternative music like Good Charlotte, fantasy novels like Eragon 
and The Silver Chair, and edgy animated shows like South Park. 
However, further analysis reveals unexpected affinities with products 
nearby: a cluster of pregnancy books and interactive Baby Einstein 
products (which itself contains surprising products: Spanish for 
Health Professionals and a KISS – Immortals DVD). Visualizing 
nuanced correlations in customer appeal suggests demographic 
patterns, such as families of a certain size and age. 

Drilling down into any of these large-scale Amazon product 
communities reveals constellations of smaller communities, 
illustrating how tile-based visual analytics can introduce structure to 
massive market data. 

5 FUTURE WORK AND CONCLUSIONS 
We plan to explore alternative community clustering algorithms to 
evaluate the resulting clustering and graph layout quality. 
Additionally, we will investigate developing a runtime graph 
analytics API for integrating on-demand graph analytic queries such 
as “path finding” capabilities that allow users to discover the path 
between any two nodes. Visual analytic overlays will present 
analytic results in context. Finally, we plan to continue to enrich the 
graph visualization with additional analytic layers for communities 
including summary statistics (e.g. distribution properties) that 
describe their makeup. 

Tile-based visual analytics offer a scalable solution to the 
challenges of creating massive graph visualizations by parallelizing 
and distributing the generation process. They also offer a user 
experience that enables investigation of any subset of big data node-
link graphs through efficient delivery of scale and context-
appropriate data to the user interface. The community-based force-
directed layouts, multi-resolution views and interactive labelling in 
our approach address problems that persist in traditional hairball 
layouts of graph data. This combination of computational analytics 
with highly expressive interactive visualization provides the 
opportunity for deeper understanding and trust. 
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