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ABSTRACT 

Challenges with using graphs to visualize extremely large entity-
relationship datasets include visibility, usability and high degree 
nodes. Visual aggregation techniques, tools and easily tailorable 
components are needed that will support answering analytical 
questions with data description, characterization and interaction 
without loss of information. We present two case studies of 
prototype implementations of JavaScript browser-based 
visualization tools leveraging the Louvain clustering algorithm. 
Two “big data” datasets were used to test aggregation of large 
networks to reveal communities and answer analytical questions.  

Keywords: Large Data Visualization, Graph/Network Data, Data 
Clustering, Distributed Computing.  

1 BACKGROUND 

Challenges in visualizing large entity-relationship datasets are 

well known. “Hairballs” resulting from trying to portray even just 

a fraction of such datasets are difficult and time consuming to 

explore and understand. Analytical questions of who is connected 

to whom are difficult to answer. New visual aggregation 

techniques and easily tailorable components are needed for 

characterization and interaction without loss of information.  

As an alternative to graph (i.e. node-link) visualizations, 

semantic substrates [1] improve user ability to understand entity 

attributes and pair-wise relationships. However, this comes at the 

cost of making it harder to see the graph topology, which is 

important to be able to identify community structure.  

In a network, communities are sub-units of nodes that are 

highly interconnected. These may be functional groups such as a 

meme in an information network or an emerging research thread 

in a co-citation network. An approach to node-link visualization 

that deals with scale and can preserve community structure is 

aggregation. Communities can be collapsed and represented as 

meta-nodes. Optimal partitioning of such datasets into densely 

connected communities, where relationships are sparse between 

nodes in different communities, is an intractable problem. Thus 

algorithms for community detection aim to find a balance between 

the quality of the partitions and the required compute time.  

Louvain clustering [2] provides a simple heuristic method based 

on modularity optimization to extract hierarchical community 

structure of large networks. While other algorithms such as Multi-

Attribute Clustering (MAC) [3] can provide better computational 

performance and more control over the resolution of summary and 

results in aggregate nodes, in our tests Louvain produced higher 

quality results. Louvain aggregated graphs more clearly showed 

distinct communities and resulted in less links, making it easier to 

understand relationships than with MAC.  

2 APPROACH 

We present two case studies of prototype implementations of 
browser-based visual analytics tools leveraging the Louvain 
clustering algorithm. These are implemented in ApertureJS, a new 
open source, JavaScript visual analytics library [4]. Two large 
datasets—CharityNet and Bitcoin—were used to test aggregation 
of large networks to reveal communities and answer analytical 
questions.  Implementation performance is of interest to support 
interactive visualizations for time-sensitive, actionable analysis.   

2.1 Community Structure and Donation Patterns in 
CharityNet 

CharityNet is a big data graph of anonymized charities and 
donation transactions recorded over a two year period. It contains 
1.8M donors (nodes), 6K charities (nodes) and 3.3M donations 
(links or edges). Our analytic task was to identify strategies for 
increasing a charity’s level of support by investigating charity and 
donor community structure and donation patterns. The analytical 
questions were:  

 Characterize who donated to a charity, from where, how 
much and how often?  

 How is the charity performing relative to its peers?  
 Who gives money to the charity’s peers, but not the charity? 
To support the user questions and analytical tasks performed on 

the dataset, the CharityNet application visualizes a root charity, all 

the donors who have donated to that charity, and all the other 

charities to which they have also donated (Figure 1).  

Our implementation of Louvain, was single threaded and ran in 

memory. It was necessary to compute in advance and cache 

results in a cluster member table.  

2.2 Financial Forensics Analysis for Bitcoin 

Bitcoin is an anonymous, stateless, encrypted online currency 
with known ties to black markets, illicit drugs, and illegal 
gambling. It supports a large anonymous online marketplace. We 
tested with a dataset of 5.4M source IDs (nodes) and 37.45M 
transactions (links or edges) to 6.3M destination IDs (nodes).  

For transactions of interest, our analytic task was to describe the 

user community around the source and destination addresses, and 

summarize the transaction activity of that community around the 

time of the transaction. This type of analysis might be triggered by 

theft, unusual transfer, or activity around market swings.  

This data proved to be a good fit for “Influent”, a browser-

based application we have developed using ApertureJS [4]. 

Influent is specialized for visualizing financial transaction flows. 

In the case of money laundering, for example, flow that branches 

to multiple accounts and later flows into the same account, 

suggesting control by a single entity, is readily observable.  

Louvain clustering is especially useful on the Bitcoin dataset 

where there are few attributes and so limits attribute based 

clustering. For working with Bitcoin data in Influent, Louvain 

aggregation provides particular utility through clustering broad 

search results, or when hitting a high degree node (thousands or 

millions of links) while tracing and linking through connections. 

To compute community structures, a distributed processing 

configuration was implemented in Spark on a high memory
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Figure 1: Example CharityNet analysis of donation patterns surrounding “Gregarious Swan Trust”. In A, it is very difficult to see how this 

charity is performing relative to peers. After applying Louvain aggregation to the same community in B, donation patterns emerge. 

 

cluster. Data is first staged in Hadoop Distributed File System 

(HDFS) or alternatively in Hive tables. Output from the algorithm 

is stored in HDFS as follows:  

1. Giraph output. For each clustering iteration, there is an Apache 

Giraph job that outputs a HDFS file with fields: id, community 

id, internal weight, list of edges to communities.  

2. Map Reduce output. For each clustering iteration there is a 

Map Reduce output HDFS file that matches the required input 

for the Giraph job, and represents a community compressed 

version of the graph. Each node represents an entire community.  

The processed data is then inserted into Influent dataview 

tables, currently implemented in MS SQL Server. As a next step, 

we will be using Cloudera Impala which will provide interactive 

response times expected to be ~2 seconds. 

3 PERFORMANCE ANALYSIS 

3.1 First Implementation (Louvain over CharityNet) 

The CharityNet application visualizes a root charity, all the donors 
who have donated to that charity, and all the other charities to 
which they have donated. Louvain aggregation was performed on 
these subsets, ranging in size from just a few nodes and links to 
ones with approximately 200K nodes and 240K links.  

With this single-threaded implementation of Louvain 

aggregation running on a single four-core processor with 24 GB 

of RAM, processing time was recorded for each subset. While 

processing was not completed for the entire dataset, we estimate it 

would have required approximately 45 hours of continuous 

processing time for the entire dataset of 1.8M nodes (1.6 GB).  

3.2 Second Implementation (Louvain over Bitcoin) 

Using a distributed implementation of Louvain running over the 
Bitcoin dataset required approximately 40 minutes to complete 
processing of 11.7M nodes (3.6 GB). This was accomplished 
using an 8 node cluster, with 24 cores and 190 GB of RAM per 
node. Processing power was underutilized, however, as only 12 
threads were used, so faster times are expected in the future.  

The Louvain output for the Bitcoin dataset is post-processed 

with a set of Python scripts to transform the data into the Influent 

dataview tables, using a single four-core processor with 24GB of 

RAM. The data is first transformed into a denormalized mapping 

of entities to all clusters to which the entity belongs, for all 

hierarchies (for all Louvain iterations done). For the Bitcoin 

Louvain output this denormalization is approximately 5 minutes.  

We then use another script to process the denormalized 

mappings to a renormalized table that matches the Influent 

dataview table. This renormalization step also takes 

approximately 5 minutes to complete. At this point there are over 

42 million rows of data, which we are currently manually adding 

to the Influent dataview table in MS SQL Server, using a flat file 

import in SQL Server Management Studio. This import, loading 

the data over a local network, takes approximately one hour.  

4 CONCLUSION 

Significant performance improvements have been achieved using 

high memory cluster configurations for implementation of the 

Louvain aggregation algorithm enabling timely visual analytics on 

significantly larger datasets. Work is underway to address 

automation of pre- and post-processing steps for less labor 

intensive data staging and reformatting.  

Next we will be exploring batch-processing/real-time thresholds 

to determine when to re-compute by batch or on the fly. The 

tradeoffs will vary with available computing resources and the 

volume of data. We are now benchmarking the decision space.  
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