
Louvain Clustering for Big Data Graph Visual Analytics

David Gauldie, Scott Langevin, Peter Schretlen, David Jonker, Neil Bozowsky, William Wright*

Oculus Info Inc.

ABSTRACT

Challenges with using graphs to visualize extremely large entity-
relationship datasets include visibility, usability and high degree
nodes. Visual aggregation techniques, tools and easily tailorable
components are needed that will support answering analytical
questions with data description, characterization and interaction
without loss of information. We present two case studies of
prototype implementations of JavaScript browser-based
visualization tools leveraging the Louvain clustering algorithm.
Two “big data” datasets were used to test aggregation of large
networks to reveal communities and answer analytical questions.

Keywords: Large Data Visualization, Graph/Network Data, Data
Clustering, Distributed Computing.

1 BACKGROUND

Challenges in visualizing large entity-relationship datasets are

well known. “Hairballs” resulting from trying to portray even just

a fraction of such datasets are difficult and time consuming to

explore and understand. Analytical questions of who is connected

to whom are difficult to answer. New visual aggregation

techniques and easily tailorable components are needed for

characterization and interaction without loss of information.

As an alternative to graph (i.e. node-link) visualizations,

semantic substrates [1] improve user ability to understand entity

attributes and pair-wise relationships. However, this comes at the

cost of making it harder to see the graph topology, which is

important to be able to identify community structure.

In a network, communities are sub-units of nodes that are

highly interconnected. These may be functional groups such as a

meme in an information network or an emerging research thread

in a co-citation network. An approach to node-link visualization

that deals with scale and can preserve community structure is

aggregation. Communities can be collapsed and represented as

meta-nodes. Optimal partitioning of such datasets into densely

connected communities, where relationships are sparse between

nodes in different communities, is an intractable problem. Thus

algorithms for community detection aim to find a balance between

the quality of the partitions and the required compute time.

Louvain clustering [2] provides a simple heuristic method based

on modularity optimization to extract hierarchical community

structure of large networks. While other algorithms such as Multi-

Attribute Clustering (MAC) [3] can provide better computational

performance and more control over the resolution of summary and

results in aggregate nodes, in our tests Louvain produced higher

quality results. Louvain aggregated graphs more clearly showed

distinct communities and resulted in less links, making it easier to

understand relationships than with MAC.

2 APPROACH

We present two case studies of prototype implementations of
browser-based visual analytics tools leveraging the Louvain
clustering algorithm. These are implemented in ApertureJS, a new
open source, JavaScript visual analytics library [4]. Two large
datasets—CharityNet and Bitcoin—were used to test aggregation
of large networks to reveal communities and answer analytical
questions. Implementation performance is of interest to support
interactive visualizations for time-sensitive, actionable analysis.

2.1 Community Structure and Donation Patterns in
CharityNet

CharityNet is a big data graph of anonymized charities and
donation transactions recorded over a two year period. It contains
1.8M donors (nodes), 6K charities (nodes) and 3.3M donations
(links or edges). Our analytic task was to identify strategies for
increasing a charity’s level of support by investigating charity and
donor community structure and donation patterns. The analytical
questions were:

 Characterize who donated to a charity, from where, how
much and how often?

 How is the charity performing relative to its peers?
 Who gives money to the charity’s peers, but not the charity?
To support the user questions and analytical tasks performed on

the dataset, the CharityNet application visualizes a root charity, all

the donors who have donated to that charity, and all the other

charities to which they have also donated (Figure 1).

Our implementation of Louvain, was single threaded and ran in

memory. It was necessary to compute in advance and cache

results in a cluster member table.

2.2 Financial Forensics Analysis for Bitcoin

Bitcoin is an anonymous, stateless, encrypted online currency
with known ties to black markets, illicit drugs, and illegal
gambling. It supports a large anonymous online marketplace. We
tested with a dataset of 5.4M source IDs (nodes) and 37.45M
transactions (links or edges) to 6.3M destination IDs (nodes).

For transactions of interest, our analytic task was to describe the

user community around the source and destination addresses, and

summarize the transaction activity of that community around the

time of the transaction. This type of analysis might be triggered by

theft, unusual transfer, or activity around market swings.

This data proved to be a good fit for “Influent”, a browser-

based application we have developed using ApertureJS [4].

Influent is specialized for visualizing financial transaction flows.

In the case of money laundering, for example, flow that branches

to multiple accounts and later flows into the same account,

suggesting control by a single entity, is readily observable.

Louvain clustering is especially useful on the Bitcoin dataset

where there are few attributes and so limits attribute based

clustering. For working with Bitcoin data in Influent, Louvain

aggregation provides particular utility through clustering broad

search results, or when hitting a high degree node (thousands or

millions of links) while tracing and linking through connections.

To compute community structures, a distributed processing

configuration was implemented in Spark on a high memory

* email: {dgauldie, slangevin, pschretlen, djonker, nbozowsky,

bwright} @oculusinfo.com

Figure 1: Example CharityNet analysis of donation patterns surrounding “Gregarious Swan Trust”. In A, it is very difficult to see how this

charity is performing relative to peers. After applying Louvain aggregation to the same community in B, donation patterns emerge.

cluster. Data is first staged in Hadoop Distributed File System

(HDFS) or alternatively in Hive tables. Output from the algorithm

is stored in HDFS as follows:

1. Giraph output. For each clustering iteration, there is an Apache

Giraph job that outputs a HDFS file with fields: id, community

id, internal weight, list of edges to communities.

2. Map Reduce output. For each clustering iteration there is a

Map Reduce output HDFS file that matches the required input

for the Giraph job, and represents a community compressed

version of the graph. Each node represents an entire community.

The processed data is then inserted into Influent dataview

tables, currently implemented in MS SQL Server. As a next step,

we will be using Cloudera Impala which will provide interactive

response times expected to be ~2 seconds.

3 PERFORMANCE ANALYSIS

3.1 First Implementation (Louvain over CharityNet)

The CharityNet application visualizes a root charity, all the donors
who have donated to that charity, and all the other charities to
which they have donated. Louvain aggregation was performed on
these subsets, ranging in size from just a few nodes and links to
ones with approximately 200K nodes and 240K links.

With this single-threaded implementation of Louvain

aggregation running on a single four-core processor with 24 GB

of RAM, processing time was recorded for each subset. While

processing was not completed for the entire dataset, we estimate it

would have required approximately 45 hours of continuous

processing time for the entire dataset of 1.8M nodes (1.6 GB).

3.2 Second Implementation (Louvain over Bitcoin)

Using a distributed implementation of Louvain running over the
Bitcoin dataset required approximately 40 minutes to complete
processing of 11.7M nodes (3.6 GB). This was accomplished
using an 8 node cluster, with 24 cores and 190 GB of RAM per
node. Processing power was underutilized, however, as only 12
threads were used, so faster times are expected in the future.

The Louvain output for the Bitcoin dataset is post-processed

with a set of Python scripts to transform the data into the Influent

dataview tables, using a single four-core processor with 24GB of

RAM. The data is first transformed into a denormalized mapping

of entities to all clusters to which the entity belongs, for all

hierarchies (for all Louvain iterations done). For the Bitcoin

Louvain output this denormalization is approximately 5 minutes.

We then use another script to process the denormalized

mappings to a renormalized table that matches the Influent

dataview table. This renormalization step also takes

approximately 5 minutes to complete. At this point there are over

42 million rows of data, which we are currently manually adding

to the Influent dataview table in MS SQL Server, using a flat file

import in SQL Server Management Studio. This import, loading

the data over a local network, takes approximately one hour.

4 CONCLUSION

Significant performance improvements have been achieved using

high memory cluster configurations for implementation of the

Louvain aggregation algorithm enabling timely visual analytics on

significantly larger datasets. Work is underway to address

automation of pre- and post-processing steps for less labor

intensive data staging and reformatting.

Next we will be exploring batch-processing/real-time thresholds

to determine when to re-compute by batch or on the fly. The

tradeoffs will vary with available computing resources and the

volume of data. We are now benchmarking the decision space.

ACKNOWLEDGEMENT

Thanks to Sotera Defense for the distributed Louvain
implementation. This study was supported by Defense Advanced
Research Projects Agency (DARPA) under Contract Number
FA8750-12-C-0317. The views, opinions, and findings contained
in this report are those of the authors and should not be construed
as an official Department of Defense position, policy, or decision.

REFERENCES

[1] Shneiderman, B. et al. Network Visualization by Semantic
Substrates, IEEE TVCG, Vol. 12, No. 5, 2006.

[2] Blondel, V., et al, Fast Unfolding of Communities in Large
Networks, Statistical Mechanics: Theory + Experiment, No 10, 2008

[3] Tian, Y., R., Hankins, and J. Patel, Efficient Aggregation for
Graph Summarization, SIGMOD, 2008.

[4] Jonker, D., et al, Aperture: An Open Web 2.0 Visualization
Framework, HICSS, 2013.

