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ABSTRACT 

Encoding a high number of categories in a glyph 
may be necessary and can be encoded as label, 
icon, shape or texture. Number of categories, 
transparency, layout, compound glyph and 
legibility are considerations for the encoding. 
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1 INTRODUCTION 

There are many guidelines for multi-attribute 
glyph design, usage and application, e.g. [1,2]. The 
author has been directly involved over the last 25 
years in the design and development of 
information visualizations (infovis) for industry, 
and some of these systems include the use of 
glyphs. While many of these systems involve 
rather simple or typical use of glyphs (e.g. 
encoding data to simple markers using size and 
hue visual attributes) there have been a number of 
cases where a glyph needed to encode multiple 
data attributes and one of those attributes that had 
a high number of unique categories (e.g. more than 
eight to ten), for example, countries (200 unique 
countries), states (50), stocks (thousands), 
different types of baseball pitches (~10), crop 
types (~20), common document formats (~10) 
and so forth. 

The contribution of this poster is to itemize the 
techniques used to encode ten or more categories 
in glyphs from more than 20 industrial 
visualizations from domains such as finance, 
healthcare and broadcasting, as well as identify 
additional design considerations.  

2 BACKGROUND 

When the number of categories to encode is low, 
a strong pre-attentive cue can be used, such as hue. 
However, hue can be difficult to use beyond eight 
or so categories and may have other perceptual 
challenges (e.g. [3,4]).  

For a higher number of categories, a different 
encoding of the data into the glyph is required, 
such as shape, pictographic icon, letter, or such.  
Compared to other visual attributes, these may not 

have the same degree of preattentive perception, 
or require active attention. However, it may still be 
highly desirable to have this information encoded 
visually as opposed to accessed via interactive 
techniques (e.g. tooltips, filters): 

 Fast access. Interactive techniques, such as 
tooltips, require slower user input such as 
mouse movement, compared to visually 
encoded data, which can be accessed more 
quickly by simply shifting visual attention 
(e.g. [5,6)]. 

 Lower lossiness. Encoding data visually is 
typically a lossy process [7]. More information 
can potentially be retained with glyphs that 
encode a higher number of categories [8]. 

 Micro patterns. Even though the encoding may 
not be pre-attentive, micro-patterns [9] may 
be visible on detailed inspection that could 
otherwise be missed if reliant on interaction 
[10,11]. 

3 GLYPHS FROM INDUSTRY 

There have been four different visual attributes 
used to represent a high number of categories 
referred to by the acronym LIST: label, icon, shape 
and texture. Table 1 summarizes glyphs from 
different projects that the author has been 
involved with that encode a high number of 
categories in a multivariate glyph. The first column 
indicates a project ID, the second indicates the 
number of unique categories encoded in the high 
category attribute. Columns 3-6 indicate the visual 
attribute used to encode the high number of 
categories, represented with the letter L, I, S or T. 
As these are multi-attribute glyphs, additional 
visual attributes are indicated with a +, for 
example, the project RTW has the high category 
attribute encoded as shape (square, circle, etc), 
which also has color and a text character added (A, 
B, etc) to indicate other data. 

3.1 Texture 

Texture has not been used often as an encoding for 
a high number of categories. Country flags and 
corporate logos are two cases where texture has 
been used (e.g. row PPR in fig. 1 below). Flags and 
logos are debatable as to whether they are icons or 
textures. Country flags are dependent on the 
unique combination of shapes and colors to form a 
unique identity. In a personal meeting with Dr. 
Colin Ware regarding shapes and texture in 2009, 
Dr.  Ware considered flag glyphs as textures (a 
unique pattern combining elements of shape and 
hue) hence it is categorized as such here. Another 
possible differentiation - these textures utilize * rbrath@uncharted.software 



  

colors and cannot be properly perceived without 
their colors; whereas icons discussed later do not 
have color dependency.    
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Totals 13 6 3 3 6 12 7 3 2 1 12 

Table 1. High number of category encoding per project indicated 

with L, I, S, T. Other glyph attributes indicated with +. 

3.2 Shape 

Shape has been used in a few applications. Unlike 
procedurally generated quantitative shapes (e.g. 
[12]) it can be challenging to generate a successful 
group of categorical shapes. Excel, for example, 
only has nine different shapes in the scatterplot, 
after which shapes repeat with different colors. 

In one case, fairly simple procedurally generated 
categoric shapes (similar to [13]) were proposed 
(row ZZZ in fig. 1), but users did not like these 
shapes, possibly because they were quite abstract; 
or perhaps symmetry caused confusion. Instead, 
the users chose a set of shapes which were 
designed as nameable shapes¸ i.e. shapes that are 
recognizable and have simple names. In RTW, for 
example, the nameable shapes shown here are 
circle, square, star, pentagon, lemon, clover 
(trefoil), guitar pick, droplet and diamond. An 
extended version showing 24 unique shapes of 
similar proportions and area is shown in figure 2. 

 

Figure 1: Sample high category glyphs redrawn based on industry 

projects. Each row corresponds to glyphs from a different 

project. 

Another challenge is to create shapes which are 
visually comparable, that is, shapes that all have 
similar size and similar amount of ink. Note, for 
example, the shapes in fig. 2 which have similar 
areas, and MBS where the simple diagonal line has 
greater line thickness than the line of the circle or 
X. 

 

Figure 2: Sample of 24 unique categoric shapes, all nearly square 

proportion with similar areas. 

3.3 Icon (Pictograph) 

Icons are differentiated here from geometric 
shapes by being a pictographic representation, 
such as a boat or plane (ITF); or battery or pennant 
(FCN). Pictographic icons can be effective if they 
represent concrete objects [14], such as planes and 
trains or types of people [15,16].  

In general, it can be difficult to design 
pictographs that can be unambiguously decoded. 
In one system there was no user training - the new 
functionality with glyphs appeared as a newly 
discoverable feature to a large community - 
unfortunately the “shovel” pictograph was 
interpreted as “the finger” pictograph by some 
users. 

Furthermore, it can be much more difficult to 
design intuitive pictographs for abstract concepts 
such as CPI, GDP, or even a list of cities. The design 
task can be aided by collections of pictograms, 
either curated (e.g. [17,18,19]) or automated [20]. 

3.4 Label 

A glyph label is typically a mnemonic code or 
abbreviation of 1-5 letters (or numbers) composed 
as part of the other items in the glyph; shown in 
examples FCN, TIK, RAP, etc. Note that in all cases, 
the labels are not full text strings, but codes or 
abbreviations easily decodable by the user 
community. For example, in one visualization, the 
full label for one node in the Consumer Price Index 
is Window and floor coverings and other linens, 
whereas the user community was familiar with the 
code associated with this category: SEHH 



  

(unfortunately, this is not a mnemonic code and 
thus not decodable outside the user community 
without additional interaction).  

Labels are the most common means of 
representing a high number of categories in this 
review. Labels may be more common because 
labels do not require the design effort of a shape or 
icon.  

In our work, we have seen examples which 
started at as icons (e.g. FCN), however, as the 
project had some success, more categories were 
added, necessitating additional icons. Sometimes, 
the new categories could be abstract concepts and 
so mnemonic codes were used instead. Thus, both 
icons and letters co-exist to describe categories 
such as FCN or a set of discrete financial event 
glyphs [21]. There are other common examples 
mixing alphanumeric and pictographs, for 
example, some font families include pictographs 
(e.g. Segoe UI Symbol); road traffic signs; or 
biological visualization (e.g. fig 3.6 in [2]).  

Some label-based glyphs used other attributes of 
fonts, such as bold, case, superscripts or spacing, to 
indicate additional data. FMP uses spacing 
between letters to redundantly encode the same 
data as glyph width - which was eventually 
dropped as users felt that it did not add 
information but reduced readability of the 
acronyms. 

4 ADDITIONAL DESIGN CONSIDERATIONS 

These glyphs have been used in tables, 
scatterplots, nodes in graphs, stacks and other 
representations. Depending on the use, there are 
other considerations which may impact choice of 
encoding. 

4.1 Number of Categories 

When the number of categories is in the range of 
10-30, shapes and icons may be used effectively. 
Project CMI had hundreds of icons, based on set of 
pre-existing icons familiar to the user community. 
Similarly textures can scale to a high numbers of 
categories, and these examples had pre-existing 
representations (flags and logos). In general, when 
the number of categories was above 30, labels 
were used, unless an icon set or texture set already 
familiar to the user was available. 

4.2 Transparency and Layout 

In some cases the glyphs were part of a 
scatterplot (or other dynamic layout) where it was 
necessary for glyphs to overlap and for the viewer 
to perceive density of glyphs (MBS, RTW). Shapes, 
assuming similar area/ink, were effective in this 
use case when the other visual attributes were also 
appropriately configured (e.g. hues of similar 
intensity). Labels have lower legibility if 
overlapping and transparent, thus RAP used 
opaque overlapping alphanumeric characters 
whereas, RMA and TIK used tweaks to the layout 
to ensure a minimum separation between adjacent 
glyphs. Similarly textures were opaque. 

4.3 Legibility 

In all scenarios, legibility is an issue. Typically 
shapes, icons and labels need sufficient contrast to 
be legible against a background, and strategies to 
aid this include either providing a dark outline 
around the shape, icon or characters; or providing 
a consistent container within which to place the 
shape/icon/label wherein the background color 
can be controlled. Conversely, when the shapes are 
intended to be used with high transparency, then 
simple shapes without reliance on fine details to 
differentiate between them, aids identification.  

Legibility is also dependent on device resolution. 
In earlier visualizations (i.e. 1990’s), lower 
resolution displays with low pixel per inch (PPI) 
limited the amount of detail that could be depicted, 
favouring representations such as simple 
polygonal shapes, flags, and plain fonts possibly 
varying only uppercase/lowercase or underline 
(e.g. PPR, RTW, RMA). User interface guidelines of 
that era recommended against detail in icon design 
and use of font attributes (e.g. [22]). With higher 
resolutions, techniques have shifted to include the 
use of fine details, such as pictographic icons or 
font attributes such as superscripts or fine control 
over character spacing [23] as have guidelines for 
modern user interfaces (e.g. [24]). 

4.4 Additional Visual Attributes 

In all cases the glyphs encode multiple data 
attributes. Hue is most frequently used, in a 
number of different ways. The color of the glyph 
(shape, icon, label) can be directly changed: e.g. 
NL2 encodes additional data in text hue (red, blue) 
as well as the saturation (vibrant to grey). 
Background color is used in some cases where 
glyph color is not. And an additional outline color 
may be used. Note that color is sometimes used 
more than once in some of these glyphs: FCN uses 
color to encode data on the letters and also uses 
color of the background shape outline. RMA uses 
the background color of the shape and also a glow 
around the shape.  

Compared to color, size is used infrequently. This 
is due to use cases. In some cases, the intended 
perception is associative (i.e. Bertin’s definition 
[25]) which size does not provide. In other cases, 
the layout constrains size, e.g. tables and stacks 
both require a constant size.   

Most of the LIST encodings have reduced 
readability with orientation: text, flags and 
pictographs rely on an expected orientation. Even 
shapes may not be perceived the same as upside 
down (e.g. droplet vs. pin) or may be symmetric 
making some orientations unperceivable (e.g. 
circle, square, star). 

In some cases, the glyph is made of compound 
elements, easily visually separable into 
components, such as a foreground icon on a 
colored background (FCN) or marker on top of a 
shape (ITS). In other cases, the representation is a 
singular object, such as colored shapes (RTW), 



  

colored icons (ITF) or rotated textures (PPR). A 
compound glyph may possibly aid the viewers by 
allowing them to focus on pre-attentive 
characteristics (e.g. size and color in RMA) while 
ignoring the easily separate high-category 
attribute at a macro-level view and then attending 
to the high-category attribute during detailed 
inspection. 

5 DISCUSSION 

    Beyond LIST, there are other possible encoding 
strategies for a high number of categories. For 
example, multiple visual channels can be combined 
together, such as a small set of shapes and a small 
set of hues, the combination of which results in the 
product of the two of sets for a high number of 
categories (e.g. red dot, red square, blue dot, blue 
square, etc., as in Excel’s scatterplot). This is a 
completely arbitrary mapping with no metaphor to 
aid the user.  

    Another approach is to convert the categoric 
values to numeric values [26]. This approach uses 
clustering techniques to order categories, assign 
distances between categories, and possibly group 
categories together - the approach is specifically 
applied to location attributes, such as axes in 
parallel coordinates. The approach could 
potentially support other novel encodings within a 
glyph, although there is no specific metaphor or 
mnemonic that would correspond to the numeric 
positioning.  

    Conversely, the LIST approaches all have the 
potential for a metaphor or mnemonic to aid the 
users’ ability to easily recall the mapping. In 
general, metaphoric visual representations can 
make it easier for users to decode the glyph with 
less effort required to learn and remember them 
(e.g. [27,28]). Recognizable textures, pictographic 
icons and mnemonic codes for labels (e.g. country 
ISO codes: US, UK, DE, JP, CA, RU, etc) all facilitate 
recall. Even simple shapes can be created which 
have mnemonic encodings, for example, the shapes 
associated with MBS in figure 1 represent baseball 
plays, from left to right, sacrifice fly, field out, 
double play, single base hit, double, triple, 
homerun, etc. 

    A significant unanswered question posed by this 
review is the potential benefit of any LIST 
encoding over another. First - do any of the 
encodings offer any hint of pre-attentive 
performance? None of these have been tested in 
lab so one can only hypothesize. All LIST encodings 
use shape - which generally ranks low on lists of 
visual attribute rankings (e.g. [29,30]) and Bertin 
specifically warns against the use of shape [25]. 
Texture, however, also uses color which typically 
ranks highly for categoric encodings - e.g. a viewer 
could focus on the color red if interested in the 
Japanese flag, although there are other red flags 
and therefore the viewer would need to do a 
slower conjunction search for red and circle.  

    Simple shapes could possibly have preattentive 
characteristics, for example, using shape elements 

previously identified in psychology experiments 
[31] such as curvature, 
vertical/horizontal/diagonal orientations, 
terminators and so forth, potentially creating an 
opportunity for preattentive perception.  

    The second part of this question, is whether the 
benefit of encoding for faster perception (e.g. 
simple shape or flags) provides an advantage over 
a representation with a metaphor or mnemonic 
that facilitates easy decoding. I.e. there is a trade-
off wherein a preattentive encoding (e.g. flag or 
simple shape) is fast to perceive but possibly slow 
to decode, whereas a slower encoding (e.g. label) is 
slow to perceive (requiring active reading) but is 
fast to decode.  

    A broad strategy for choosing one encoding over 
the other does not exist, but a heuristic may be 
created. Assuming that we do not know the answer 
to the first question above and we err on the side 
that none of these encodings offer preattentive 
performance, then the encoding choice centers on 
choosing a representation that will be easiest for 
the viewer to decode:  

1. If a pre-existing set of textures, shapes, icons or 
codes exist, first consider these. 

2. If the number of categories is high (i.e. >30), 
labels may be the only solution. Consider short 
mnemonic labels, such as codes or 
abbreviations, if available and decodable by 
the user community rather than long 
descriptive strings. 

3. If the number of encodings is lower (10-30) 
consider each of LIST encodings, with 
particular attention to an appropriate 
metaphor or mnemonic to facilitate decoding.  

4. If there are alternative encodings possible, the 
use case may help determine which encoding 
is preferable. For example, in a visualization to 
engage the public, country flags are a colorful, 
visceral encoding; while in an analytic 
application, mnemonic labels may offer faster 
decoding performance over flags when 
analysing smaller countries.  

6 CONCLUSION 

Encoding a data attribute with a high number of 
categories may be necessary in some 
visualizations. Labels, icons, shapes and texture 
are potential visual attributes that can be used. 
Evaluation is an area for future researchers to 
consider the relative performance between these 
techniques.  Extending techniques for 
systematising and automating glyph generation of 
high category glyphs is another area for future 
work. Investigation into the potential for visual 
attributes that make use of higher pixel densities 
such as detailed shapes, pictographs and font 
attributes are another area of potential further 
investigation. 
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