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Abstract

We present in-progress work on Distil, a mixed-initiative system to enable non-experts
with subject matter expertise to generate data-driven models using an interactive analytic
question first workflow. Our approach incorporates data discovery, enrichment, analytic
model recommendation, and automated visualization to understand data and models.
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1. Introduction

Few tools exist to make data analysis accessible and conversational. Such tools lack support
for the principled top-down, questions-first, approach needed to put the power of machine
learning and data science into the hands of non-experts with key subject matter knowledge.
Because many data science tasks are procedural, there is an opportunity to (semi-)automate
them, closing the loop between subject matter experts (SMEs) and decision-making.

Our approach to addressing this challenge is Distil, which uses a question-driven, mixed-
initiative approach to maximize the combinatorial power of human/machine intelligence
for data-driven discovery of models. Current data analysis tools assume that users are: 1)
familiar with the data; 2) knowledgeable about visualization options and limitations; 3) able
to pre-process data, extract salient information, and apply analytics to answer analytical
questions; and 4) able to “slice and dice” their way to the answer using basic charts and
dots on a map. They provide no workflow support for analytic goals, limited assistance or
suggestions for model development, understanding, or analytic thinking and limited support
for iterative analysis and sensemaking. Our research focus in the development of Distil
aims to overcome these limitations by combining semantic data discovery services, analytic
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model recommendation, and automated visual analytic data and model summarization to
construct quantitative models in support of analytical needs.

In this paper we present in-progress work on Distil and its technical components.

2. Related Work

Previous research has focused on providing assistive agents for various aspects of the data
science process. Data wrangling constitutes the bulk of the data science process (Kandel
et al., 2012), encompassing data parsing, normalizing, cleaning, and imputing missing data
attributes. The mixed-initiative approaches of low-level tools such as Data Wrangler (Guo
et al., 2011), OpenRefine (OpenRefine, 2018), and commercial systems like Trifacta (Heer
et al., 2015) are designed for expert data scientists. Karma (Szekely et al., 2011) assists semi-
automated semantic schema inference to map raw data to a normalized schema. Limited
to no support is provided to assist with data discovery or mapping data to user objectives.

Mixed-initiative data analysis combines domain expert knowledge and observational
reasoning with the bias-free processing of large volumes of data afforded by machine learning
techniques. Cooperative generation of decision trees (Ankerst et al., 1999) and the RESIN
system for predictive analytics (Yue et al., 2010) are examples of human-in-the loop systems
that attempt to harness domain expertise by providing intuitive interfaces for direct model
parameter adjustment. This can be challenging for users without a data science background,
as it requires understanding of the learning algorithms used. ForceSPIRE (Endert et al.,
2012), ScatterGather (Hossain et al., 2012), Bixplorer (Fiaux et al., 2013) and Active Data
Environment (Cook et al., 2015) are examples of human-is-the-loop tools (Endert et al.,
2014). These provide familiar interface elements to support task-level analytic reasoning,
and transparently translate user interactions into changes to the underlying computational
models. While this approach better employs the cognitive ability of domain expert users,
establishing the mapping between interface actions and the model can be difficult.

Mixed-initiative analysis can be complemented by natural language interfaces such as
those found in DataTone (Gao et al., 2015), Articulate (Sun et al., 2010), and Watson
Analytics (IBM, 2018). They provide a way to specify simple goals and manage ambiguity
in natural language queries, but are limited to basic charts, summary statistics on a single
dataset, and “template” analysis with limited data or analytic recommendations.

While the tools and techniques outlined provide significant automation of data science
tasks, they suffer in aggregate as each is tailored to a specific class of model or problem
space. Integration of these types of domain-specific approaches into a general analytic
framework remains an open problem (Wang et al., 2016) (Makonin et al., 2016).

3. Technical Approach

Distil is a mixed-initiative decision-driven modeling workbench that aims to enable SMEs to
discover underlying dynamics of complex systems without the need for rare expertise in data
science. Through Distil, SMEs visually explore and understand heterogeneous data sources
related to analytic objectives, express the objectives using an intuitive visual vocabulary,
and interact with, understand, curate, and refine resultant machine-inferred data models.
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The vocabulary of current data science tools consists of computing and plotting vari-
ables. Assembly of low-level variables, analytic derivatives, and visualizations for a purpose
requires expertise that few have, and is far too laborious and fault prone. These approaches
often only answer low-level statistical questions in isolation and cannot inform courses of
action without expert interpretation, consolidation, and extrapolation.

In contrast to the existing approach of low-level statistical analysis or laborious, ob-
scure and error prone processing pipeline building, we focus on visual question decom-
position into quantifiable facets that recommender services compose into user-tailorable
analytic workflows by interfacing with model construction components. A mixed-initiative
human-computer dialog guides model assembly and refinement with expert knowledge. Our
technical approach encompasses the following components:

Data Enrichment and Discovery primitives: A collection of primitives to extract
semantic information, identify explanatory relationships and conceptual data descriptions,
and characterize analytic utility of datasets for recommending data and tailoring model
discovery for analytic goals;

Analytic Model Recommendation Engine: Semi-automated to match data, user
analytic goals, and analytic primitives to generate empirical models;

Automated, Adaptive Visual Analytic Recommendation Engine: Semantics-
driven to guide user understanding of data, complex models, and generation of tailorable
visual analytic workflows for sense-making of model output;

Mixed-Initiative Decision-Driven Modeling Workbench: To express analytic
goals using a visual and natural language vocabulary. The Workbench helps users visually
understand relevant data, explore and refine models.

3.1. Data Enrichment and Data Discovery

To extract knowledge from data, it is essential to understand and prepare the content for
consumption by other components in a model discovery system. Four primary components
enrich the data by inferring what it contains and how it might be used: Novelty Detection,
Semantic Data Type Classification, Concept Mapping, and Analytic Data Characterization.

3.1.1. Novelty Detection

While users sometimes examine data to evaluate a specific, well-formed hypothesis, often
they simply explore it to identify available insights. Given the size of possible model spaces,
it helps—even for small datasets—to identify potential starting points for exploration.

This is a difficult problem for an automated system, but techniques often associated
with the feature selection task can identify starting points for an investigation. Principal
Component Analysis (PCA) (Hoffmann, 2007) allows features to be ranked based on their
contribution to the variance of the dataset as a whole, while Random Forests (Breiman,
2001) allow for the importance of features relative to a specific target feature to be captured.

In our system, PUNK (New Knowledge, 2017) applies a PCA-based ranking algorithm,
where feature weightings of the first principal component or the average weighting across
the top N principal components derive feature interestingness. Feature importance ranking
relative to a given target is computed using a Random Forest combined with a grid search.
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3.1.2. Semantic Data Type Classification

Systematic data labeling attempts with semantic web models like the Resource Description
Framework (RDF) have largely focused on domain-specific, supervised dataset categoriza-
tion for information retrieval (Ben-David et al., 2010). For synthesis, model building, and
other analytical tasks, data type classification is still determined manually or by heuristics.
This may suit a bespoke analysis, but any system to automate the analysis process must also
automate this intuition. A model for learned Semantic Data Type Classification enables
automated data enrichment, data synthesis, model construction, and model explanation.

Semantic typing in Distil uses SIMON (Semantic Inference for the Modelling of Ontolo-
gies), a Character-Level Convolutional Neural Network model for text classification (New
Knowledge, 2018). Given a set of input strings, SIMON computes a list of possible seman-
tic types for the set, along with their associated probabilities. Basic types, such as integer,
floating point, and categorical can be inferred, along with richer types such as address, date,
and geographic position. By relying on a model of structural features, SIMON avoids the
fragility associated with typing based on ad-hoc, human-coded rules.

3.1.3. Concept Mapping

Extending Semantic Data Type Classification, we learn higher-level concepts to understand
what is in the dataset and what the data is about in real-world context. We draw on unsu-
pervised learning techniques for textual topic analysis such as Latent Dirichlet Allocation
(Blei et al., 2003). We augment these techniques with metadata such as semantic data
types and word sense disambiguation with technologies such as WordNet (Fellbaum, 1998),
FrameNet (Johnson et al., 2002) and Word2Vec (Mikolov et al., 2013).

Our system DUKE (Dataset Understanding via Knowledge-base Embeddings) (Azunre
et al., 2018) employs a pre-trained Knowledge Base semantic embedding to perform type
recommendation within a prespecified ontology. We aggregate the recommended types into
a small collection of super types predicted to be descriptive of the dataset by exploiting the
hierarchical structure of the various types in the ontology.

3.1.4. Analytic Data Characterization

Analytic Data Characterization aims to characterize the suitability of datasets for types
of analysis. For example, dataset X contains temporal properties, but the primitive de-
tects that there are no trends, anomalies, or seasonality in the time series, so little is to be
gained temporally. Similarly, through extracted relationships we can construct any number
of graphs, but are any of them useful? With an ontology to describe the inherent ana-
lytical utility of the data, we can inform data recommendation services and guide model
discovery according to user-expressed objectives. Further, related data and analytics need
a measurable scoring system for determining analytic suitability and quantifiable metrics.

Example scoring opportunities based on data type in terms of utility include: for time
series, Distribution across binning options, correlation, clustering, peak, trend, and change
detection; for graphs, modularity, community detection, centrality, connected components,
and triangle counting; for categorical values, value-counting, entropy scores, and Google-
search prevalence; and for geospatial, geographic distribution and distance-to metrics.
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3.2. Model Query and Analytic Workflow Recommendation Engine

Our model recommendation engine consists one components to continually search the so-
lution space, exploring processing primitive and data interactions (Meta-Learning), and
another to use the exploratory results to respond to user queries (Task Learning).

Meta-Learning: This includes a system for continual, automatic, empirical analysis
of data science primitives, their interactions with each other, and their interactions with
data. These findings are necessary to understand the space of reasonable configurations of
primitives, optimal pipelines of primitives, and cohesive pipeline fragments from sequen-
tially ordered primitives. This process continually runs and explores the solution space,
populating a repository with results of the experiments. This repository, which is accessible
to the processes involved in fulfilling SME queries, can significantly reduce the necessary
search space during Task Learning.

Task Learning: The application of knowledge derived from Meta-learning in response
to an SME query with a particular set of data. This is a general framework for drawing
from previous experiments and known-best configurations to recommend and rank likely
good approaches to novel problems.

Both components also consider task runtime, incorporating a general framework of con-
straints and re-ranking proposed models in a principled manner. This will flexibly incorpo-
rate constraints on the search from any source, though we primarily regard the constraints
coming from the data, previous experiments, theory, and expert best practices.

3.3. Mixed-Initiative Question-Driven Modeling Workbench

The Distil workflow for building question-driven models guides domain expert users through
assembly of data to support answers, nomination of features to consider in modeling answers,
and inspection of models and model performance, with means for iterative refinement. To
illustrate this workflow, we present a simple scenario in which a user without data science
expertise wishes to predict vehicle acceleration using quantitative mileage performance data.

Select Data (Figure 1a). To begin, the user searches Distil’s data lake for relevant
data by expressing intent in natural language (predict vehicle acceleration). Distil returns
an annotated list of datasets that contain references to acceleration, for user selection.

Select Target (Figure 1b). Once the d 196 autoMpg dataset is selected, Distil lists the
features it contains, sorted by the Novelty Detection measure of interestingness. Semantic
Data Type Classification infers the type of data in each feature and visualizes the range of
values found in the dataset. The user chooses to model and predict acceleration.

Create Models (Figure 1c). Next the user begins the model building process by nom-
inating factors to empirically model, from the remaining features. Interactive visualization
aids decision making. Highlighting a range in a feature of interest shows its relationship
with other features, by highlighting corresponding records. Outliers such as horsepower=0
can be rapidly identified as bad samples and excluded from modeling. Users with no tacit
knowledge may click to add all features without exclusion.

Once features have been selected, the user initiates the creation of models. Distil au-
tomatically chooses algorithms to propose several possible models to predict the selected
target (acceleration) using the features to model (horsepower and cylinders). Because ac-
celeration is scalar, Distil generates regression models.
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Review Results (Figure 1d). The View Models stage enables the user to evaluate and
compare model results generated by Distil. An Error slider controls the acceptable degree
of variance in classifying predictions as correct1. As in the previous step, the user can
interactively highlight correct or incorrect sample sets within feature summaries to identify
contributing factors, and return to a previous step to make refinements.

Figure 1: Machine intelligence guides the user through creating a regression model of acceleration,
from (a) data selection, to (b) target selection, (c) model configuration and (d) analysis of results.

4. Conclusion

In this paper we presented an overview of Distil, a mixed-initiative system to enable domain
experts to conduct question-oriented and data-driven model discovery using an iterative
workflow. Internal testing and development was conducted using open datasets from sources
such as OpenML (OpenML, 2018) and Kaggle (Kaggle Inc, 2018). Early formal user testing
was conducted by NIST (NIST, 2018) using challenge problems on blind datasets have been
encouraging. Several areas of future work have been identified and are planned for further
experimentation: 1) expansion beyond tabular datasets to include imagery, time series, and
graph data; 2) fusion of multiple heterogeneous datasets to expand the domain of potential
models; 3) expansion beyond simple models that predict a single value to derive models
that can be separated into facets of a larger complex system that are a composition of a
hierarchy of models (Jonker, 2012); and 4) interaction and scalable visualization of models
for sensemaking, and ”what” if analysis (Langevin et al., 2015).
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