
Accepted HICSS, 2013 © 2012 Oculus Info Inc.

Aperture: An Open Web 2.0 Visualization Framework

David Jonker

Oculus Info Inc.

djonker@oculusinfo.com

Scott Langevin

Oculus Info Inc.

slangevin@oculusinfo.com

Neil Bozowsky

Oculus Info Inc.

nbozowsky@oculusinfo.com

William Wright

Oculus Info Inc.

bwright@oculusinfo.com

Abstract
Aperture is an open, adaptable and extensible Web

2.0 visualization framework, designed to produce

visualizations for analysts and decision makers in any

common web browser. Aperture utilizes a novel layer

based approach to visualization assembly, and a data

mapping API that simplifies the process of adaptable

transformation of data and analytic results into visual

forms and properties. This common visual layer and

data mapping API, combined with core elements such

as contextually derivable color palettes, layout and

symbol ontology services is designed to enable highly

creative and expressive visual analytics, rapidly and

with less effort. This paper introduces the Aperture

framework, describing key features of the

programming API and reference implementation,

presents example use cases, and proposes an approach

for measuring technical performance metrics for

software development, and operational performance

metrics for visualization support of analysis and

decision making.

1. Introduction

To achieve optimal information visualization and

visual analytic solutions [1], [2], rapidly and with less

effort, we have designed and developed an open,

adaptable and extensible software development

framework, to produce visualization applications for

analysts and decision makers in any common web

browser. This framework—its design, API and

implementations—is called Aperture.

Key to Aperture is a new layer based approach to

visualization assembly, and a data mapping API that

simplifies the process of adaptable transformation of

data and analytic results into visual forms and

properties. The Aperture framework and API are

designed for ease of extension, allowing a broad

community to leverage and extend capabilities and

even to invent new paradigms, and interoperability

with Web 2.0, Service Oriented Architecture (SOA)

and geographic information system (GIS) standards.

Our primary goal in designing Aperture was to

support “limitless extensibility” (layering

visualizations in unpredictable ways) for complex data

problems, using a simple and intuitive programming

grammar. Key constraints were that it be optimized for

efficient dynamic updates, and runtime adaptive to

varying levels of browser support for graphics APIs

such as svg, vml and canvas.

In the next section we provide brief background on

the challenges in creating effective information

visualizations and visual analytics. In Section 3 we

present our objectives in designing and implementing

the Aperture visualization framework. Section 4

discusses some examples of related work. Section 5

describes Aperture as both an architectural framework

and reference implementation, with use case examples

to illustrate the layer based visualization and data

mapping APIs. An example application where

Aperture was used to rapidly develop a tailored cyber

situation awareness and analysis "big data" application

(8 GB, 158M rows) is discussed in Section 6, and in

Section 7 we conclude and suggest future work.

2. Background

Visualization is an external mental aid that

enhances cognitive abilities. When information is

presented visually, efficient innate human capabilities

can be used to perceive and process data. Information

visualization techniques amplify cognition by

increasing human mental resources, reducing search

times, improving recognition of patterns, increasing

inference making, and increasing monitoring scope [1],

[3]. These benefits can translate into significant

system and task related performance gains.

Recently a new field has emerged called visual

analytics which builds on information visualization and

computational analytics. Visual analytics support

analytical reasoning facilitated by interactive visual

interfaces and integration with computational analytics.

People, data and analytics work together in a visual

system of systems to harness the respective strengths

of each component. People use visual analytics tools

and techniques to synthesize information and derive

Accepted HICSS, 2013 © 2012 Oculus Info Inc.

insight from massive, dynamic, ambiguous, and often

conflicting data; detect the expected and discover the

unexpected; provide timely, defensible, and

understandable assessments; and communicate

assessments effectively for action [2]. Visualization

and visual analytics produce superior information and

knowledge products to support human situation

awareness and decision-making.

However, visual analytics systems can be difficult

to design and build effectively, often requiring very

experienced researchers and designers for success. A

basic vocabulary of standard chart widgets often falls

short of the mark. Mapping complex data to

appropriately informative visual forms and devising a

means and structure for navigating it requires

knowledge and application of graphic design

principles, user interface design, the task domain,

human factors, visualization techniques and creativity.

A misstep in any of these areas will result in poor

performance, obscuring the data or confusing its

interpretation. To make the art of crafting visual

analytics more accessible and robust for the average

developer, new framework models are required.

3. Objectives

Application developers often fail to consider

visualization as a holistic system, inserting any number

of independent, generic charts into their user interface

(UI). But cognitive interpretation of basic graphical

elements such as color and scale are highly sensitive to

contextual factors and the nature of the data [3].

Systemic approaches to visualization have often been

either drag and drop dashboard assembly frameworks

or collections of “slice and dice” widgets for laboring

through generic bar chart data exploration. By using

multiple, separate views in unrelated layouts, over

multiple screen pages, people must rely on visual

memory to retain and compare information, and human

visual memory is weak [3]. Generic slice and dice

approaches also do not embody task centric

information visual structures. These slice and dice

approaches fail to provide the necessary depth or

breadth of insight required for effective situation

awareness and decision making from complex and

massive data. They also fail to provide a sufficiently

rapid, intuitive, and repeatable means of fulfilling the

challenges of representing information facets for

routine or ad-hoc tasks, and communicating those

information facets to the task performer and to others.

As shown in Figure 1, this results in a gap for rapid

insight in complex decision-making.

There is an opportunity to provide a new, agile

(i.e. flexible and rapid) approach to more often

achieve optimal visualization solutions, rapidly and

with less effort. In designing the Aperture framework,

we set out to create an intuitive, easy to understand

programming vocabulary implementing a high level

grammar of visualization [4], allowing the user to

focus more on domain specifics.

Key design objectives for the Aperture framework

include: 1) minimize the time and effort required to

design and test best practices as well as innovative

visualizations, 2) provide visualization and interaction

designs appropriate for complex and large data, 3)

encode principles that respect and exploit human

perception and cognition, 4) use a flexible and agile

development process, and 5) produce an open

framework with open standards and source code.

Figure 1: The gap between simplicity for rapid insight

and complexity for decision making. Agile visual
analytics bridges the gap for rapid insight in complex

decision-making.

4. Related work

A wide selection of off-the-shelf solutions for

rapid data visualization is readily available.

Dashboards or business intelligence (BI) tools provide

basic charting capabilities, restricted to a limited

number of data dimensions per chart.

Tools such as Spotfire [5] or Tableau [6] allow for

“slicing and dicing” the data into linked views of

different dimensions. This enables a more detailed look

into the data, but requires the user to deal with the

complexity of mapping the data to appropriate views,

and then exploring for insight among this collection of

views.

Tailored visualization solutions (e.g. GeoTime

[27]) provide more optimal fit with specific data and

analytic tasks, but require experienced, specialized

practitioners to design and implement.

Accepted HICSS, 2013 © 2012 Oculus Info Inc.

Specialized development tools such as R [7], or

Python with Numpy [8]/ Scipy [9]/ Matplotlib [10]

functional libraries, provide analytic capabilities with

some plotting extensions to display results.

Visually oriented tools such as Adobe Flash [11]

and processing [12], or graphics libraries such as

Raphaël [13] can aid UI, graphics, interaction and

visualization development, but analytic capabilities

must be custom coded.

Visualization engineering toolkits such as Protovis

[14], its predecessor Prefuse [15], and its heir, D3 [16],

as well as Improvise [17], attempt to bridge these two

differing approaches by providing libraries specifically

for making custom interactive visualizations.

These toolkits provide abstractions of graphical

elements and their associated behavior, as building

blocks to be combined together by the developer. The

open, declarative approach taken by Protovis has

proved to be a succinct grammar for such constructions

[18]. However, because of the way these grammar

elements are combined, they must be lower level in

nature to preserve flexibility in visualization design. In

practice, we find these lower level abstractions are not

always intuitive, even to a visualization expert, and can

obscure the higher level analytic task at hand.

5. The Aperture framework

Our goal was to combine visual and analytic

approaches, and create an expressive medium for

programming graphics and visualizations in a more

efficient manner through building data structures and

semantics. In addition, we wanted to enable ease of

usage for developers without specialized expertise in

graphics programming or visualization.

The Aperture API provides a high level

vocabulary of visualization constructs, such as plots,

bar and line series, indicators, nodes and links, rather

than low level graphic primitives that must be chained

together. This is a vocabulary more familiar to

analysts, intended to help preserve context when

assembling visualizations.

While combining primitive visual elements in

novel ways provides one means of expressiveness, the

approach in Aperture is to layer more intuitive and

highly functional constructs in novel combinations.

An extensible set of layer forms are provided,

including extension of existing broad capabilities of the

OpenLayers [19] open source toolkit to overlay

dynamically interactive, geo-located visual entity

representations. Chart, timeline and network forms can

also be constructed and combined, with reference

implementations as described in section 5.7.

Aperture is designed for fully interactive visual

analytic applications, including multi-touch support.

Filters can be used to highlight information of interest

for interactive exploration. Additionally, layers

monitor the state of what is added, changed or

removed. State changes can be animated (fade in,

transition, fade out) to provide visual affordances for

continuity in transitions.

5.1. Layer based visualization assembly

Aperture was developed to enable richly layered,

coordinated expressive combinations of map, chart,

network and timeline “vizlets” or small visualization

mini-applications in a service-oriented Web 2.0

environment. Examples are shown in Figures 2 and 3.

Using layers allows a merging or fusing of multiple

information facets into a more unified, task centric

display of information.

Figure 2: Layered visualization approach for creative,

interactive, expressive visualization forms in a browser.

Figure 3: Any number of representational layers can

be added to parent layers, including maps and charts.

This unified layer based approach to visualization

assembly is intended to enable more powerful

combinations of visual forms [20], with greater ease,

Accepted HICSS, 2013 © 2012 Oculus Info Inc.

than a standard widget based approach with limited

configuration options.

In Aperture, a layer represents a set of like

graphical elements, which are mapped in a spatial

context. Types of layers currently implemented

include, but are not limited to, map, chart, network and

timeline.

Unlike conventional geospatial layers that remain

independent from one another, Aperture provides

hierarchical nesting through layer composability.

Children inherit mappings and data of their parent.

These can also optionally be overridden in the child

layer. This provides the organizational benefits of

recursive groups (e.g. charts on a map) with the shared

property management benefits of flat sets of visuals.

Layers are designed to be easily combined in

many ways—e.g. pie charts on maps, line charts as

nodes of a node-link graph—including use as dominant

form or small multiple.

5.2. Data mapping API

Aperture's visual mapping and filter API provides

adaptability to data schemas and transformation of data

into succinct interactive visual forms. An easily

understood sentence-style chain of function calls is

used to define the mapping of each visual property

from a domain-specific data object. Keys that define

these are shareable across vizlets for consistency of

scales.

Data values are mapped to visual properties as

constants or from a data source. Data variables can

optionally be represented as a scalar range, using

interpolation when mapping values to visual properties,

or ordinal range, for properties such as instance series

colors or up/down indicators.

Aperture filters are functions that are applied to

visual properties after a visual value is calculated using

the associated data mapping. Filters can be used to

alter the visual value, for example making a color

brighter or increasing size of a visual element. Used in

conjunction with filters, sets can provide functionality

such as linked selection. Filters can be applied to

elements of sets, which can be added, removed,

toggled, and checked for containment.

5.3. Example use cases

To illustrate use of the Aperture visualization

assembly and data mapping API, we present a use case

in which we wish to visualize opinion poll data for

various cities. Figure 4 shows the desired visualization,

with a radial indicator layer overlaid on a map

displaying notional opinion poll data for four cities.

Figure 4: Radial pie charts visualization of opinion

poll data.

When the mouse is over a segment of one of the

indicators, the corresponding response is displayed in

text form and all wedges of that type highlight (Figure

5). This example makes use of mouse hover event

listeners and visual mapping filters to apply alternate

styles to hovered data.

Figure 5: Effect of mouseover on a chart segment,

causing wedges for the same type of poll response in
all charts to grow in radius.

In Figure 6 we see a sample of the data to be

visualized. Figures 7 to 11 show the steps required to

create a map, add a chart layer, map data variables to

visual properties, and set interactive behavior.

Accepted HICSS, 2013 © 2012 Oculus Info Inc.

Figure 6: Sample data to be visualized. In addition to Honolulu data, example visualization dataset

also includes geographic location, number of poll respondents, and response percentages for
Toronto, Vancouver and Mexico City.

Figure 7: Create a map (a) and add a content position layer to situate visual entities in child layers (b).

Aperture integrates the open source OpenLayers JavaScript library to provide full-featured client side map
rendering capabilities.

Figure 8: Set value ranges and map them to response percentages and number of respondents (a).

Specify color definitions (b) and map to poll responses, applying blending for additional color variations (c).

Accepted HICSS, 2013 © 2012 Oculus Info Inc.

Figure 9: Add a radial chart layer to the content position layer, inheriting geographic location properties (a).

Configure chart properties, including mapping chart radius to number of respondents and sectors to poll
response percentages (b). Add an icon layer to the content position layer, also inheriting geographic

location properties (c), and specify ontological icon type and attributes (d).

Figure 10: Create a set containing the hovered poll response type (a). On hover, using a filter on the

mapped visual property, cause it to grow (b), and add the poll response label to the data set to also
appear (c). Apply animation both on mouseover and when clearing the highlighted group (d).

Figure 11: Zoom the map to the desired geographic location (a) and draw the visualization (b).

In the above use case we see how the process of

adding and configuring a chart and icon layer is

simplified by inheritance of properties from the parent

content position layer. In the same fashion, any number

and ordering of Aperture layers can be composed

together.

Figure 12 shows a more complex visualization. In

this example, we see maritime vessel tracks and

locations, which can be animated over time through

use of the timeline control. Popup charts indicate close

encounters with other vessels, displaying tracks for

those vessels. This visualization combines multiple

Accepted HICSS, 2013 © 2012 Oculus Info Inc.

layers of map, icon, line series, chart and timeline

types. The process of composition, however, remains

simple and straightforward.

Figure 12: Maritime vessel tracks and locations, with

popup charts indicating close encounters with other
vessels. Courtesy DRDC Valcartier [28].

The line series layer, for example, that is added to

the close encounter popup charts to show tracks for

those vessels, inherits properties from the chart layer.

This automatically enables the lines to be properly

situated and drawn within their corresponding chart.

5.4. Browser based client implementation

Aperture is implemented as a standards based

JavaScript visualization library and associated

supporting services for creating mashups of maps,

charts, networks and timelines and richly layered

combinations thereof using one consistent and efficient

API.

AJAX (asynchronous JavaScript and XML) offers

the highest degree of deployability and cross-device

support for client-side visual analytic capabilities.

However, without a coordinated framework, such as

Aperture, it can be a technically challenging

environment for visualization. A legacy of

inconsistent support for graphics technologies across

browsers is the source of many low level issues, which

must be addressed for even the most basic elements of

visual expression, such as diagonal lines and curves.

Moreover the open and exceptionally lightweight

nature of AJAX technology can be both a blessing and

a headache.

Often a complex mashup of numerous independent

JavaScript libraries and server side libraries is required

to build up the technology stack for an application,

with dependencies and overlaps that can be difficult to

resolve and maintain. Without Aperture, an AJAX

chart widget library and a map library addresses many

of the same challenges but each provides its own end

to end solution with its own proprietary interfaces,

nuances, requirements and limitations. Aperture

addresses these issues by providing a unified API.

5.5. Interoperability using Web 2.0, SOA and

GIS standards

Aperture uses a non-proprietary Web 2.0, Service

Oriented Architecture (SOA) approach for greatest

interoperability with standards such as OpenSearch,

OpenSocial, RSS/Atom/GeoRSS, OAuth, RDF, WS-I

Basic Profile, REST, SOAP, XML Schema, WSDL,

UDDI, WMS, WFS/ WFS-T, WCS, KML, GML,

WPS, CSW, CTS, WMC, and SOS.

Aperture does not need to “own” the visualization

container portal, enabling constructed Aperture vizlets

to be easily embedded with full interoperability in

frameworks that do, such as the Ozone Widget

Framework (OWF) [21], or in any simple web page,

where open JavaScript APIs provide full

interoperability with other DOM elements (Figure 13).

Figure 13: Modular and open architecture enables

flexible options for rapid integration and cross-
leveraging of capabilities.

On the client side, Aperture makes use of the

OpenLayers [19] Geographic Information System

(GIS) to provide full featured client side map rendering

capabilities, and abstracted renderer options that

include Raphaël [13] for interactive cross-browser

graphics, with support for modern browsers as well as

IE7 and IE8. The libraries or selective components of

the library are easily integrated into any Web 2.0

architecture.

The Aperture standards, framework and API are

provided under the MIT License (MIT) open source

licensing, allowing a broad community to leverage and

extend capabilities and even to invent new paradigms.

Accepted HICSS, 2013 © 2012 Oculus Info Inc.

5.6. Aperture services

In addition to the visualization assembly and data

mapping APIs, rapid visualization development and

integration is further supported by a suite of Aperture

services:

 Property Palettes, and a graph Layout Service.

 Icon Service API designed to match entity

requests to best available symbols, with support

for dynamic scaling of vector source icons and

common image types. A reference set of socio-

cultural oriented icons and supporting service has

been implemented.

 Image Capture Service API for preserving a

snapshot of client visualization suitable for

insertion into a report document. Implementations

for both Windows and Linux servers have been

developed.

 Application Support Service APIs and industry

reference implementations for authentication,

CMS storage, io, logging, and a client message

bus.

 Modular, Extensible Architecture providing

options to include select subsets of Aperture only,

and extend and adapt capabilities as necessary.

5.7. Reference vizlet implementations

Aperture includes reference implementations in

AJAX of several frequently used “vizlets” or small

visualization mini-applications. These serve as useful

visualization methods that work right out-of-the-box as

well as informative examples of how to implement

visualizations in the Aperture framework and

standards. The emphasis is on providing functionality

with high usability. The vizlets are extendable by third

parties to enable specialization, ongoing innovation

and community development. Foundation vizlets

include:

 Geospatial View: A geo-spatial viewer

component is a fundamental part of the Aperture

framework. Maps are used to show information

visually in relationship to its location as well as

spatial, directional and temporal relationships. The

reference implementation makes use of the

OpenLayers open source toolkit.

 Network Graph: These relationship diagrams may

be used to illustrate the social interaction of groups

and individuals. Leaders, informal groupings,

group dynamics and roles as well as relationships

and their natures can be represented. Similarly,

these “node and link” graphs may also be used to

show relationships among concepts, events,

actions, etc.

 Charts and Line Graphs: A line graph visually

displays quantitative relationships between two or

more groups of information. Graphs have one or

two axes utilizing quantitative, ordinal or

categorical scales. Reference implementations

include timeseries, bar charts and pie charts,

supporting their use in combination and in

embedded form, with common scales and legends.

 Timeline View: Timeline charts are typically a

specialization of bar charts and line graphs that

relate events, activities, actions, characteristics, to

time.

6. Example application case study

As an example of practicing “agile” (i.e. flexible

and rapid) visual analytics using “big data” (8 GB,

158M rows), Aperture was used to rapidly develop a

tailored visualization for the IEEE Visual Analytics

Science and Technology (VAST) Challenge 2012 [22].

The challenge focused on visual analytics applications

for large scale cyber situation awareness and analysis.

The contest committee provided two mini-challenges

to test analytical skills and challenge the capabilities of

visual analytics applications.

The 2012 VAST Challenges were set in

BankWorld, a fictional planet with its own unique

geography. For “Mini-Challenge 1: Bank of Money

Enterprise: Cyber Situation Awareness,” supplied

datasets provided metadata about the Bank of Money

(BOM) network and periodic status reports from all

computing equipment in the BOM enterprise. With

offices of various sizes all across BankWorld and

computers in use throughout the day in each office, the

challenge was to achieve cyber situation awareness

across an enterprise network of approximately

1,000,000 machines.

We designed a tailored situation awareness and

analysis application (Figure 14) showing thumbnail

time series charts of policy events, performance events,

and derived questionable activity issues. These

thumbnails are arranged according to the hierarchical

organization of the Bank of Money. In a single view,

we display the corporate headquarters (CHQ), the large

data centers (DC1-5) and all 50 of the large and small

regions. The legend allows event filtering by type, and

also by subtype of “questionable activity.” The

application also contains an interactive map in the

upper left to allow analysis of geo-based trends.

Interactions include drilling down to view detailed

event counts and machine type distributions for each

region or center (Figure 15).

Accepted HICSS, 2013 © 2012 Oculus Info Inc.

Figure 14: Cyber-situation awareness application for “BankWorld”. Using the legend to filter on policy event type

we observe an upward trend in policy violations across all regions in the enterprise. The charts are generated based
on normalized counts of events as a percentage of the total number of machines in the region, with the base of each

time scale proportional to the number of machines. Regions are sorted by time zone, and shaded areas in each
thumbnail indicate periods outside of business hours for that area.

Figure 15: Examining the detailed data for a policy violation anomaly in a CHQ workstation. A “severe” policy

violation happened at CHQ and at DC2 (a). We open a detailed comparison of CHQ and DC2 (b), and discover that
the events at CHQ occurred on office workstations (c), and the events at DC2 happened on computational servers.

From our table view (d), we drill down into the list of IP addresses affected by the notifications. We are able to
observe “critical” policy deviations triggered by a workstation in CHQ (172.1.56.176).

Accepted HICSS, 2013 © 2012 Oculus Info Inc.

Using the Aperture visualization framework, our

time from project inception to problem solution was 20

days and included: analytic visualization design;

development (data, analytics, and visualization);

testing and tuning the tool; deployment; analysis using

the tool; and reporting the solution. The lessons

learned from this test will be used to develop a

foundation framework for doing agile analysis on

extremely large datasets using visual analytics.

7. Conclusion and future work

Aperture has moved beyond proof-of-concept and

is now in use on two projects currently underway. One

project is for maritime situation awareness and the

other is for human social cultural systems analysis. In

these projects, the jumpstart that Aperture provides has

been critical in meeting the requirements for rich,

expressive visualizations and effective visual analytics,

within time and budget constraints.

In our next steps, the intent is to measure technical

and operational performance. Technical performance

metrics for software development frameworks or

toolkits depend on design goals, and for Aperture, will

include ease of use (e.g. time to develop an

application), performance, extensibility, web standards

compliance, functionality, interoperability and ease of

deployment. Operational performance metrics for

visualization support of analysis and decision making,

include detailed metrics in each of situation awareness

(SA), collaboration, interaction, creativity, utility [23].

Broadly speaking, information and knowledge

products expressed in visual form let people see and

understand complex information, more quickly and

more thoroughly. Improved understanding improves

decision-making. The Aperture approach to

operational metrics will be to merge Endsley’s

perception / comprehension / projection levels of SA

[24] with the visualization community’s current

thinking on performance metrics to create a short set of

relevant metrics to describe Aperture goals and to

gauge Aperture progress.

Planning is also underway to extend the Aperture

framework with mixed-initiative partial automation

recommendations to support novice visualization

developers. To increase success in achieving optimal

visualization solutions, the design must be grounded in

core scientific principles of perception and cognition

[3]. Important principles, guidelines and cognitive

ergonomics have been identified that can support

recommendations to aid in the rapid and effective

composition and implementation of an easy-to-use and

perceptually/cognitively correct solution. This is

critical because human performance can vary

significantly from plus/minus 100 times according to

the representation used in problem solving [25].

Mixed initiative interaction supports an efficient

interleaving of contributions by users and automated

services to converge on solutions to problems [26].

8. References

[1] Card, Stuart, J. Mackinlay, B. Shneiderman, Readings in

Information Visualization, Morgan Kaufman, 1999.

[2] Thomas, Jim, and K. Cook (Ed.), Illuminating the Path:

The R&D Agenda for Visual Analytics, IEEE Press,

2005.

[3] Ware, Colin, Information Visualization: Perception for

Design, 2nd Edition, Morgan Kaufman, 2004.[4]

Wilkinson, L., The Grammar of Graphics, Springer,

2005.

[5] http://spotfire.tibco.com/

[6] http://www.tableausoftware.com/

[7] http://www.r-project.org/

[8] http://numpy.scipy.org/

[9] http://www.scipy.org/

[10] http://matplotlib.sourceforge.net/

[11] http://www.adobe.com/flashplatform/

[12] http://processing.org/

[13] http://raphaeljs.com/

[14] Bostock, M. and Heer, J., “Protovis: A graphical toolkit

for visualization”, IEEE Transactions on Visualization

and Computer Graphics, IEEE, 2009.

[15] Heer, J. and Card, S.K. and Landay, J.A., “Prefuse: a

toolkit for interactive information visualization”,

Proceedings of the SIGCHI conference on Human

factors in computing systems, ACM, 2005.

[16] Bostock, M., Ogievetsky, V. and Heer, J., “D3 Data-

Driven Documents”, IEEE Transactions onVisualization

and Computer Graphics, IEEE, 2011.

[17] Weaver, C., “Building highly-coordinated visualizations

in improvise”, IEEE Symposium on InfoVis, 2004.[18]

Heer, J. and Bostock, M., “Declarative language design

for interactive visualization”, IEEE Transactions on

Visualization and Computer Graphics, 2010.

[19] http://openlayers.org/

[20] Javed, W. and Elmqvist, N., “Exploring the design space

of composite visualization”, IEEE Pacific Visualization

Symposium, 2012.

[21] Hellar, D.B. and Vega, L.C., “The Ozone Widget

Framework: towards modularity of C2 human

interfaces”, Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, 2012.

[22] http://www.vacommunity.org/VAST+Challenge+2012

[23] Scholtz, J., Beyond Usability: Evaluation Aspects

of Visual Analytic Environments, IEEE VAST, 2006.

[24] Endsley, M., Situation Awareness: A Key Cognitive

Factor in Effectiveness of Battle Command, Battle for

Cognition, Praeger, CT, 2008.

[25] Hanrahan, P, Systems of Thought, EuroVis Keynote,

2009.

[26] Horvitz, E., Uncertainty, Action, and Interaction: In

Pursuit of Mixed-Initiative Computing, IEEE

Intelligent Systems 14(5), 1999.

[27] Kapler, T. and W. Wright, GeoTime Information

Visualization, IEEE InfoVis Conference, 2004.

[28] Courtesy of DRDC Valcartier Maritime Visual

Analytics Prototype project, 2012.

