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Abstract— Distil is a system for constructing point-and-click 

machine learning models, here extended for multi-spectral satel-

lite imagery for timeseries data leveraging an autoML pipeline, 

adding embedding model trained using self-supervised learning; 

rapid data labeling facilitated with image query;  hierarchical ge-

ospatial timeseries modeling; and sub-image feature extraction us-

ing weakly-supervised segmentation. 
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I. INTRODUCTION  

Analysts working with geo-spatial data confront 
many new and different formats of spatial data. The 
analytic task may require the data to be labelled, i.e. 
appropriately tagged, so that a viewer can find and 
analyze the appropriate features of interest. Standard 
machine learning based approaches typically rely on 
labeled data to use as training data – but with new 
datasets and/or new ways to use datasets, those labels 
may not exist (i.e. there may be noground truth la-
bels). With spatial data this is further complicated by 
massive data (terabytes); multispectral data (beyond 
RGB); noisy data (e.g. clouds, bad data); incomplete 
coverage; resolution, frequency and projection is-
sues; and the combination of multiple data sources. 

We address the above with our system Distil. Our 
primary contribution in this paper is self-supervised 
learning on new geospatial datasets for building pre-
dictive models from the vast amount of readily avail-
able multispectral satellite imagery to identify condi-
tions of interest. We leverage past approaches in self-
supervised learning, multi-datatype auto-ML pipe-
line; imagery analysis using convolutional neural net-
works on multispectral satellite imagery; and exten-
sions to hierarchical time-series analysis and sub-im-
age feature extraction.  

II. BACKGROUND 

A. AutoML pipeline 

Auto-machine learning (AutoML) makes machine 
learning accessible to domain experts with machine-
guided, point-and-click data discovery, iterative 
model definition and analysis [1]. Issues with Au-
toML systems often include initial data wrangling 
challenges and require visual exploration of the data 
relative to the analytic objective [2].  One approach is 
to combine the ML pipeline operations with a corre-
sponding generated visualization-oriented interface 
to interactively curate, define and refine machine in-
ferences and resulting models e.g. [3].  

B. Computer vision and geo-spatial imagery 

State of the art approaches in computer vision use 
embedding models to create feature vectors from 
source images, which are then used in downstream 
machine learning tasks. The embedding models are 
generated by pre-training on large, labelled image 
datasets[4]. However, creating these models are 
challenging for geo-spatial imagery, as publicly la-
beled datasets may be constrained to limited channels 
(such as visible light) or geographic areas (e.g. Eu-
rope only). Thus, they are not generalizable to other 
regions or images with different channels.  

C. Self-supervised learning 

To overcome a lack of embedding models for 
multi-spectral imagery, our organization had prior 
success with self-supervised learning which con-
structs a model using a “pre-text” task that relies only 
on unlabeled data [5]. These pre-trained models act 
as a “backbone” for a number of downstream tasks 
such as image retrieval or to construct classifiers. 
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D. Image Query & Rapid Data Labeling 

We have prior expertise creating applications 
where we want to classify data, but do not have la-
beled training data. As users’ time is valuable, we 
want to leverage their expertise but minimize effort. 
We created interfaces for experts to find and label a 
small set of positive examples; then use information 
retrieval techniques to find similar examples. Users 
label more images as needed, then create a machine 
learning classifier to label data based on those exam-
ples. After a few iterations, we have been able to ap-
proach benchmarks associated with well-labeled da-
tasets [6,7]. This rapidly labeled data can then be used 
to construct predictive machine learning models. 

E. Spatio-Temporal Visual Analytics  

Many approaches to spatio-temporal visual 
analytics have focused on either time (e.g. variants of 
timelines [8]) or space (e.g. variants of maps [9]); or 
multiple panels (e.g. primary map, side panel with a 
timeline). Thus the approaches tend to favor one or 
the other representation. 

III. SYSTEM 

Our solution, Distil [10], uses a mixed initiative 
approach to maximize the value of the domain expert 
in guiding the machine learning processes. Many ex-
isting data science tools assume users are: a) familiar 
with the data; b) familiar with statistical analysis, fea-
tures and models; c) able to prepare their data and se-
lect appropriate features;  and d) able to drive the soft-
ware to the goal. These tools may not provide work-
flow to support the analytic goal, limited assistance 
with model development, limited support for iterative 
analysis, and limited ability to introspect the features 
most utilized by the model.  

Distil’s design goals include: a) easy step-by-step 
workflow of the model-building process with con-
sistent affordances; b) perform data and model anal-
ysis as background tasks and surface with the same 
affordances; c) reduce cognitive load with consistent 

simple visual representations; and d) build trust with 
introspection of the resulting model.  

A.  Workflow Overview 

Fig. 1 outlines the primary workflow left to right 
across the top line in blue: After ingesting data, the 
domain expert can interactively preview, profile and 
explore data, and optionally enrich the data by add-
ing features or labels, by diverting into additional 
tasks shown on the second line. Proceeding with 
model-building, the domain expert selects features, 
and fits the model, thereafter allowing the user to as-
sess results, including iterating on training the model 
and comparing to previous models. The trained 
model can then be applied to the full dataset, and ex-
plained with model metrics (e.g. accuracy and recall) 
or ML feature explanation. Lastly, results can be ex-
ported as new data, including use in composing new 
multi-models by iterating through the workflow.  

B. System Architecture 

Distil consists of: a) an Auto ML Server, which 
leverages a common data process and model 
primitives composable into an ML pipeline to gener-
ate, validate and execute models; b) a Dataset/Model 
repository, which provides storage and indexing to 
support user-driven queries at interactive speed; and 
c) an Application Server, including a front-end to 
provide user-driven workflows and delegate compute 
intensive tasks to the Auto ML Server and 
Dataset/Model repository.  

C. Modeling Overview 

As per Fig. 1, Distil provides a general purpose, 
human-in-the-loop workflow for solving a range of 
machine learning problems, and supports datasets 
such as tabular data, timeseries or images. For spatial 
imagery, we have extended Distil to support multi-
spectral image classification, such as satellite im-
agery and associated spatial datasets such as rainfall 
and temperature (which can be incorporated in the 
“Query data” and “Select features” steps). 
To support the data exploration step 

Figure 1: Distil’s step-by-step model-building workflow: primary workflow on top in blue, with optional steps and iterations below.  



 

beyond profiling and information retrieval, we cluster 
images (e.g. using K-means for HDBSCAN) and flag 
outlier images using Isolation Forest. Models are cre-
ated using our AutoML service. For spatial data, the 
pipeline relies on a transfer learning approach, in 
which feature vectors are first generated from input 
images and then shallow learners (e.g. SVM, Random 
Forest, XGBoost) are applied to the outputs.  

D. Spatial Data Overview 

When working with multi-spectral satellite 
imagery, data challenges include: a) scale of data is 
massive; b) heterogeneous data, as it varies in spatial 
and temporal resolution and available channels; c) 
data is inherently noisy (e.g. clouds, atmosphere); and 
d) there are very few labeled training sets.   

Our work leverages Sentinel-2 [11] data, which 
produces images with 12 separate channels, 3 of 
which are standard visible wavelengths (RGB).  We 
wanted to use all available channels, as those beyond 
RGB provide important indicators (e.g. moisture or 
vegetation) for model training and problem solving. 
Reusing standard pre-trained RGB models would 
sacrifice the value in these additional channels. To 
address this, we use a modified CNN and a self-
supervised method [12] to pre-train an embedding 
model that extends feature vectors across all image 
channel values.  We tested the quality of the produced 
vectors against a land-use classification task and 
achieved 10x label efficiency compared to a fully 
supervised CNN using only RGB image weights.   

For scalability and performance within Distil, we ap-
ply this model to an input dataset as part of a one-time 
ingest step. This creates image vectors that can be 
stored and used for downstream modeling, with the 
added benefit of compressing the input samples, fa-
cilitating more efficient use of system memory during 
model building tasks.  When training a land-use clas-
sification model, Distil will fit a lightweight learner, 
such as an SVM to the produced image vectors. 

Image retrieval is performed based on distance met-
rics within the vector space.   

The previously mentioned classification task re-
quires labeled data, which is often not available in re-
mote-sensing. To create labels for a data subset to 
train the model, we provide a human-in-the-loop 
workflow (Fig. 1, “Is data labelled” subtask on the 
lower line). Users interactively find and tag examples 
of positive and negative images, which are used as a 
baseline query. Then the system ranks all images 
based on similarity (weighted average search). This 
list can then be used to group and label larger sets of 
images. This approach is iterated upon until sufficient 
samples are labelled. Distil’s AutoML will automati-
cally generate models based on this training data to 
label the data. Once labeled, models can be built, as 
indicated in the “Fit Models” step. Depending on the 
target, models could be classifiers, or timeseries or 
segmentation (next sections).  

E. Hierarchical Geospatial Timeseries Analysis 

In previous work we developed a hierarchical 
time-series forecasting approach using a regularized 
embedding space [13] to make predictions at differ-
ent levels of aggregation simultaneously by leverag-
ing the inherent hierarchical relationships to produce 
better forecasts. Applying this technique to geo-spa-
tial data is a natural application for making predic-
tions at different spatial and temporal resolutions. 
This approach can overcome gaps or noise present at 
different granularity [14][15].  

A classifier trained using the method described in 
section D. Spatial Data Overview and applied to 
multi-spectral satellite imagery to extract features 
over time can yield a multivariate timeseries for each 
area, thereby converting the data into a hierarchical 
timeseries analysis (Fig. 2). Distil has workflows to 
enable analysts to perform these operations to con-
duct complex multi-variate timeseries analysis by 
also combining diverse multi-variate geo-temporal 
datasets. 

 
Figure 2: Geo-spatial hierarchical time-series analysis. 



 

 
Figure 3: Results of sub-image segmentation using a self-supervised feature 

extractor for agriculture from 10 provided training examples (every image pixel 

labeled vs. one label per image) 

F. Sub-image feature extraction using weakly-

supervised segmentation 

Extraction of image-level features such as the 
presence of farmland can be extended to sub-image 
features using image segmentation to group pixels in 
an image for finer grained analysis. Our work on 
weakly supervised segmentation investigated the 
performance of segmentation models that had access 
to a small number of image-level labels rather than 
each individual pixel as training data. This paradigm 
aligns with our user-driven labelling approach, as the 
same process that generates labels for image-level 
classification can be applied to generating labels for 
the weakly-supervised segmentation task. We 
explored a variety of different methods [16][17] to 
segment images based on pixel-level and image level 
labels in a weakly-supervised context. We found we 
could retain the performance of the segmentation 
model when substituting our self-supervised embed-
ding model for a fully-supervised encoder, 
eliminating the need for a pre-training model on large 
amounts of labeled data which fits our geo-spatial 
modeling needs (Fig. 3). 

IV. EXAMPLE 

A pilot with an agency investigated assessing in-
sect infestation of crop land via remote sensing. Us-
ing Distil, we can: a) run the pipeline to classify im-
agery for indicators of insect infestation, using local 
ground truth reports of infestations to label the initial 
training data; b) run the pipeline with iterative user 
labeling and sub-feature extraction to identify im-
portant crop land; and then c) run the timeseries 
model across sequences of output from the prior 

models to create timeseries of propensity for potential 
infestation across a region down to plots of land. 
These timeseries can then be used to predictively as-
sess fields at risk, e.g., differentiating fields with a 
high propensity still trending upwards, versus fields 
with a high propensity but trending downwards.  

V. CONCLUSION 

Distil is a work in progress with promising results 
for domain experts to create timeseries from 
unlabelled multi-spectral satellite imagery fused with 
other geospatial datasets. Labelling effort is reduced 
and output quality is significantly improved over 
naïve labelling approaches.  
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